High-precision abundances of Sc, Mn, Cu, and Ba in solar twins. Trends of element ratios with stellar age

A previous study of correlations between element abundance ratios, [X/Fe], and ages of solar twin stars is extended to include Sc, Mn, Cu, and Ba. HARPS spectra with S/N > 600 are used to derive very precise (+/- 0.01 dex) differential abundances, and stellar ages with internal errors less than 1 Gyr are obtained by interpolation in the logg - Teff diagram between isochrones calculated with the Aarhus Stellar Evolution Code. For stars younger than 6 Gyr, [X/Fe] is tightly correlated with stellar age for all elements. For ages between 6 and 9 Gyr, the [X/Fe] - age correlations break down and the stars split up into two groups having respectively high and low [X/Fe] for the odd-Z elements. It is concluded that while stars in the solar neighborhood younger than about 6 Gyr were formed from interstellar gas with a smooth chemical evolution, older stars have originated from regions enriched by supernovae with different neutron excesses. Furthermore, the correlations between abundance ratios and stellar age suggest that: i) Sc is made in Type II supernovae along with the alpha-capture elements, ii) the Type II to Ia SNe yield ratio is about the same for Mn and Fe, iii) Cu is mainly made by the weak s-process in massive stars, iv) the Ba/Y yield ratio for AGB stars increases with decreasing stellar mass, v) [Y/Mg] and [Y/Al] can be used as "chemical clocks" when determining ages of solar metallicity stars.

[1]  M. Asplund,et al.  Nucleosynthetic history of elements in the Galactic disk - [X/Fe]–age relations from high-precision spectroscopy , 2016, 1606.04842.

[2]  V. Adibekyan,et al.  Abundance trend with condensation temperature for stars with different Galactic birth places , 2016, 1606.04714.

[3]  M. Davies,et al.  Gravitational scattering of stars and clusters and the heating of the Galactic disk , 2016, 1605.02965.

[4]  M. T. Maia,et al.  The Solar Twin Planet Search III. The [Y/Mg] clock: estimating stellar ages of solar-type stars , 2016, 1604.05733.

[5]  A. Karakas,et al.  STELLAR YIELDS FROM METAL-RICH ASYMPTOTIC GIANT BRANCH MODELS , 2016, 1604.02178.

[6]  J. Maldonado,et al.  Evolved stars and the origin of abundance trends in planet hosts , 2016, 1602.00835.

[7]  J. Meléndez,et al.  Correlation between lithium abundances and ages of solar twin stars , 2016, 1601.05054.

[8]  J. R. Shi,et al.  Non-LTE analysis of copper abundances for the two distinct halo populations in the solar neighborhood (Research Note) , 2015, 1511.04168.

[9]  S. Solanki,et al.  Variation of the Mn I 539.4 nm line with the solar cycle , 2015, 1511.01286.

[10]  J. Mel'endez,et al.  Planet signatures and effect of the chemical evolution of the Galactic thin-disk stars , 2015, 1511.01012.

[11]  F. Thielemann,et al.  Mn abundances in the stars of the Galactic disc with metallicities -1.0 < [Fe/H] < 0.3 , 2015, 1509.05341.

[12]  The University of Texas at Austin,et al.  Local associations and the barium puzzle , 2015, 1508.02815.

[13]  P. François,et al.  Grid of theoretical NLTE equivalent widths of four Ba II lines and barium abundance in cool stars , 2015, 1507.07472.

[14]  S. Lucatello,et al.  The GAPS Programme with HARPS-N at TNG. X. Differential abundances in the XO-2 planet hosting binary , 2015, 1506.01614.

[15]  P. D. Aleo,et al.  THE DISSIMILAR CHEMICAL COMPOSITION OF THE PLANET-HOSTING STARS OF THE XO-2 BINARY SYSTEM , 2015, 1506.01025.

[16]  P. Nissen High-precision abundances of elements in solar twin stars - Trends with stellar age and elemental condensation temperature , 2015, 1504.07598.

[17]  J. R. Shi,et al.  NON-LTE ANALYSIS OF NEUTRAL COPPER IN LATE-TYPE METAL-POOR STARS , 2015, 1503.06269.

[18]  J. Maldonado,et al.  Searching for signatures of planet formation in stars with circumstellar debris discs , 2015, 1502.07100.

[19]  E. Gaidos WHAT ARE LITTLE WORLDS MADE OF? STELLAR ABUNDANCES AND THE BUILDING BLOCKS OF PLANETS , 2015, 1502.06991.

[20]  Lund,et al.  The origin and evolution of the odd-Z iron-peak elements Sc, V, Mn, and Co in the Milky Way stellar disk ?,?? , 2015, 1502.01152.

[21]  K. Cunha,et al.  ABUNDANCE DIFFERENCES BETWEEN EXOPLANET BINARY HOST STARS XO-2N AND XO-2S—DEPENDENCE ON STELLAR PARAMETERS , 2015, 1501.02167.

[22]  G. Carraro,et al.  New insights on Ba overabundance in open clusters. Evidence for the intermediate neutron-capture process at play? , 2014, 1411.1422.

[23]  K. Cunha,et al.  DETAILED ABUNDANCES OF STARS WITH SMALL PLANETS DISCOVERED BY KEPLER. I. THE FIRST SAMPLE , 2015, 1511.00934.

[24]  M. T. Maia,et al.  The Solar Twin Planet Search. I. Fundamental parameters of the stellar sample , 2014, 1408.4130.

[25]  M. T. Maia,et al.  HIGH PRECISION ABUNDANCES IN THE 16 Cyg BINARY SYSTEM: A SIGNATURE OF THE ROCKY CORE IN THE GIANT PLANET , 2014, 1407.4132.

[26]  V. Adibekyan,et al.  On the origin of stars with and without planets - Tc trends and clues to Galactic evolution , 2014, 1404.4514.

[27]  A. Korn,et al.  Abundances and possible diffusion of elements in M 67 stars , 2013, 1310.6297.

[28]  J. Kollmeier,et al.  CALCIUM-RICH GAP TRANSIENTS: SOLVING THE CALCIUM CONUNDRUM IN THE INTRACLUSTER MEDIUM , 2013, 1401.7017.

[29]  D. O. Astronomy,et al.  Exploring the Milky Way stellar disk - A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood , 2013, 1309.2631.

[30]  M. Lehnert,et al.  The age structure of stellar populations in the solar vicinity Clues of a two-phase formation history of the Milky Way disk , 2013, 1305.4663.

[31]  H. W. Zhang,et al.  Scandium Abundance in Metal-poor Stars , 2013, Proceedings of the International Astronomical Union.

[32]  F. Thielemann,et al.  Abundances of neutron-capture elements in stars of the Galactic disk substructures , 2013, 1303.1730.

[33]  E. Friel,et al.  ZIRCONIUM, BARIUM, LANTHANUM, AND EUROPIUM ABUNDANCES IN OPEN CLUSTERS , 2013, 1303.4283.

[34]  V. Adibekyan,et al.  Searching for the signatures of terrestrial planets in F-, G-type main-sequence stars , 2013, 1301.2109.

[35]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[36]  V. Adibekyan,et al.  Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program - Galactic stellar populations and planets , 2012, 1207.2388.

[37]  M. Asplund,et al.  Non-LTE line formation of Fe in late-type stars - II. 1D spectroscopic stellar parameters , 2012, 1207.2454.

[38]  G. F. Porto de Mello,et al.  Accurate and homogeneous abundance patterns in solar-type stars of the solar neighbourhood: a chemo-chronological analysis , 2012, 1204.4433.

[39]  S. Randich,et al.  NEWS ON THE s PROCESS FROM YOUNG OPEN CLUSTERS , 2011, 1112.5290.

[40]  V. Adibekyan,et al.  A new α-enhanced super-solar metallicity population , 2011, 1111.4936.

[41]  I. Roederer,et al.  ELEMENTAL ABUNDANCE DIFFERENCES IN THE 16 CYGNI BINARY SYSTEM: A SIGNATURE OF GAS GIANT PLANET FORMATION? , 2011, 1107.5814.

[42]  S. Randich,et al.  s-PROCESSING IN THE GALACTIC DISK. I. SUPER-SOLAR ABUNDANCES OF Y, Zr, La, AND Ce IN YOUNG OPEN CLUSTERS , 2011, 1105.2208.

[43]  William J. Schuster,et al.  Two distinct halo populations in the solar neighborhood. II. Evidence from stellar abundances of Mn, Cu, Zn, Y, and Ba , 2011, 1103.4755.

[44]  M. Asplund,et al.  Non-LTE calculations for neutral Na in late-type stars using improved atomic data , 2011, 1102.2160.

[45]  N. Santos,et al.  SEARCHING FOR THE SIGNATURES OF TERRESTRIAL PLANETS IN SOLAR ANALOGS , 2010, 1007.0580.

[46]  F. Matteucci,et al.  Quantifying the uncertainties of chemical evolution studies II. Stellar yields , 2010, 1006.5863.

[47]  E. O. Ofek,et al.  A faint type of supernova from a white dwarf with a helium-rich companion , 2009, Nature.

[48]  M. Asplund,et al.  Accurate abundance patterns of solar twins and analogs - Does the anomalous solar chemical composition come from planet formation? , 2009, 0911.1893.

[49]  S. Bisterzo,et al.  Galactic Chemical Evolution of the s Process from AGB Stars , 2009, Publications of the Astronomical Society of Australia.

[50]  M. Asplund,et al.  Submitted to ApJL Preprint typeset using L ATEX style emulateapj v. 08/22/09 THE PECULIAR SOLAR COMPOSITION AND ITS POSSIBLE RELATION TO PLANET FORMATION , 2022 .

[51]  Italy.,et al.  ENHANCED PRODUCTION OF BARIUM IN LOW-MASS STARS: EVIDENCE FROM OPEN CLUSTERS , 2009, 0901.2743.

[52]  James Binney,et al.  Chemical evolution with radial mixing , 2008, 0809.3006.

[53]  Astrophysics,et al.  NLTE abundances of Mn in a sample of metal-poor stars ⋆ , 2008, 0811.0681.

[54]  A. McWilliam,et al.  The chemical evolution of manganese in different stellar systems , 2008, 0807.1463.

[55]  D. Queloz,et al.  Spectroscopic parameters for 451 stars in the HARPS GTO planet search program - Stellar [Fe/H] and the frequency of exo-Neptunes , 2008, 0805.4826.

[56]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[57]  H. W. Zhang,et al.  A non-local thermodynamic equilibrum study of scandium in the Sun , 2008 .

[58]  H. W. Zhang,et al.  NLTE study of scandium in the Sun , 2008, 0802.2609.

[59]  Jørgen Christensen-Dalsgaard,et al.  ASTEC—the Aarhus STellar Evolution Code , 2007, 0710.3114.

[60]  K. Nomoto,et al.  ν-Process Nucleosynthesis in Population III Core-Collapse Supernovae , 2007, 0710.0251.

[61]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[62]  University of Michigan,et al.  Accepted for publication in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 03/07/07 TRACING THE GALACTIC THICK DISK TO SOLAR METALLICITIES 1 , 2022 .

[63]  Italy.,et al.  Contrasting copper evolution in ω Centauri and the Milky Way , 2007, astro-ph/0703760.

[64]  Lund,et al.  Manganese trends in a sample of thin and thick disk stars - The origin of Mn , 2007, astro-ph/0703488.

[65]  K. Nomoto,et al.  Galactic Chemical Evolution: Carbon through Zinc , 2006, astro-ph/0608688.

[66]  Bangalore,et al.  Elemental abundance survey of the Galactic thick disc , 2005, astro-ph/0512505.

[67]  A. Mezzacappa,et al.  Composition of the Innermost Core-Collapse Supernova Ejecta , 2004, astro-ph/0410208.

[68]  E. Tolstoy,et al.  Stellar Chemical Signatures and Hierarchical Galaxy Formation , 2004, astro-ph/0406120.

[69]  E. H. Olsen,et al.  The Geneva-Copenhagen survey of the Solar neighbourhood - Ages, metallicities, and kinematic properties of ~14 000 F and G dwarfs , 2004, astro-ph/0405198.

[70]  C. Sneden,et al.  # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALACTIC EVOLUTION OF Sr, Y, AND Zr: A MULTIPLICITY OF NUCLEOSYNTHETIC PROCESSES , 2003 .

[71]  Jean-Luis Lizon,et al.  Setting New Standards with HARPS , 2003 .

[72]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[73]  Pierre Demarque,et al.  The Y2 Stellar Evolutionary Tracks , 2002, astro-ph/0210201.

[74]  C. Soubiran,et al.  Abundances of Cu and Zn in metal-poor stars: Clues for Galaxy evolution , 2002, astro-ph/0209401.

[75]  D. Alexander,et al.  The Y2 Isochrones for α-Element Enhanced Mixtures , 2002, astro-ph/0208175.

[76]  J. Binney,et al.  Radial mixing in galactic discs , 2002, astro-ph/0203510.

[77]  K. Cunha,et al.  The Evolution of Copper in the Globular Cluster ω Centauri , 2002, astro-ph/0203408.

[78]  L. Pasquini,et al.  High-Resolution Spectroscopy of Metal-rich Giants in ω Centauri: First Indication of Type Ia Supernova Enrichment , 2002, astro-ph/0202397.

[79]  V. Smith,et al.  Nucleosynthesis and Mixing on the Asymptotic Giant Branch. III. Predicted and Observed s-Process Abundances , 2001, astro-ph/0104424.

[80]  C. Ree,et al.  Toward Better Age Estimates for Stellar Populations: The Y2 Isochrones for Solar Mixture , 2001, astro-ph/0104292.

[81]  J. Prochaska,et al.  The Galactic Thick Disk Stellar Abundances , 2000, astro-ph/0008075.

[82]  J. Prochaska,et al.  On the Perils of Hyperfine Splitting: A Reanalysis of Mn and Sc Abundance Trends , 2000, astro-ph/0005471.

[83]  Koichi Iwamoto,et al.  Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation , 1999 .

[84]  M. Busso,et al.  Neutron Capture in Low-Mass Asymptotic Giant Branch Stars: Cross Sections and Abundance Signatures , 1999, astro-ph/9906266.

[85]  G. C. Strobel Stars resembling the Sun , 1996 .

[86]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[87]  Masa-Aki Hashimoto,et al.  Core-Collapse Supernovae and Their Ejecta , 1995 .

[88]  S. Woosley,et al.  Galacti chemical evolution: Hygrogen through zinc , 1994, astro-ph/9411003.

[89]  C. Raiteri,et al.  The Weak s-Component and Nucleosynthesis in Massive Stars , 1993 .

[90]  Claude Brezinski,et al.  Numerical recipes in Fortran (The art of scientific computing) : W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Cambridge Univ. Press, Cambridge, 2nd ed., 1992. 963 pp., US$49.95, ISBN 0-521-43064-X.☆ , 1993 .

[91]  J. Christensen-Dalsgaard,et al.  Effects of diffusion on solar models and their oscillation frequencies , 1993 .

[92]  William H. Press,et al.  Numerical recipes in FORTRAN (2nd ed.): the art of scientific computing , 1992 .

[93]  M. Grenon Past and present metal abundance gradient in the galactic disc , 1987 .

[94]  A. Unsöld Physik der Sternatmosphären: Mit besonderer Berücksichtigung der Sonne , 1938 .