Kinetic resolution of 1-chloro-3-(1-naphthyloxy)-2-propanol, an intermediate in the synthesis of beta-adrenergic receptor blockers.

[1]  R. Prasad,et al.  A practical chemoenzymic route to (S)-(−)-propranolol , 2005, Biotechnology Letters.

[2]  S. Narimatsu,et al.  Synthesis of enantiomeric 4-hydroxypropranolols from 1,4-dihydroxynaphthalene , 2001 .

[3]  S. V. Damle,et al.  Biotransformations with Rhizopus arrhizus and Geotrichum candidum for the preparation of (S)-atenolol and (S)-propranolol. , 2000, Bioorganic & medicinal chemistry.

[4]  A. Loupy,et al.  Resolution of racemic 1-azido-3-aryloxy-2-propanols by lipase-catalyzed enantioselective acetylation , 2000 .

[5]  M. Salunkhe,et al.  Chemoenzymatic Synthesis of (R) - and (S) - Atenolol and Propranolol employing Lipase Catalyzed Enantioselective Esterification and Hydrolysis , 1999 .

[6]  J. Sinisterra,et al.  Resolution of 3-α-naphthoxy-1,2-propanediol using Candida antarctica lipase , 1999 .

[7]  S. Mohapatra,et al.  Optimizing lipase activity, enantioselectivity, and stability with medium engineering and immobilization for beta-blocker synthesis. , 1999, Biotechnology and bioengineering.

[8]  S. V. Damle,et al.  One Pot Synthesis Of (+−)/(S)-Atenolol And(+−)/(S)Propranolol By Employing Polymer Supported Reagent , 1999 .

[9]  D. Tai,et al.  Kinetic resolution of propranolol by a lipase-catalyzed N-acetylation , 1997 .

[10]  J. Sinisterra,et al.  A NEW APPLICATION OF CANDIDA ANTARCTICA LIPASE FOR OBTAINING NATURAL HOMOCHIRAL BBAS ARYLOXYPROPANOLAMINE , 1996 .

[11]  K. Sharpless,et al.  A practical route to enantiopure 1,2-aminoalcohols , 1996 .

[12]  D. Tai,et al.  Lipase catalyzed kinetic resolution of pharmaceutically useful chloro alcohols in heptane , 1995 .

[13]  Yoichi M. A. Yamada,et al.  Syntheses of (S)-(−)-pindolol and [3′-13C]-(R)-(−)-pindolol utilizing a lanthanum-lithium-(R)-BINOL ((R)-LLB) catalyzed nitroaldol reaction , 1994 .

[14]  Koichi Tanaka,et al.  Catalytic asymmetric nitroaldol reaction using optically active rare earth BINOL complexes : investigation of the catalyst structure , 1993 .

[15]  G. Koomen,et al.  Synthesis of enantiomerically pure (S)-(−)-propranolol from sorbitol , 1993 .

[16]  D. Bianchi,et al.  Enzymatic resolution of 1,2-diols : preparation of optically pure dropropizine , 1992 .

[17]  Jens Hartung,et al.  The Osmium-Catalyzed Asymmetric Dihydroxylation: A New Ligand Class and a Process Improvement , 1992 .

[18]  M. Schneider,et al.  Enzyme assisted preparation of enantiomerically pure β-adrenergic blockers III. Optically active chlorohydrin derivatives and their conversion , 1992 .

[19]  Y. Choi,et al.  Lipase-catalyzed enantioselective transesterification of O-trityl 1,2-diols. Practical synthesis of (R)-tritylglycidol , 1992 .

[20]  Mahn‐Joo Kim,et al.  Pseudomonas lipases as catalysts in organic synthesis: specificity of lipoprotein lipase , 1992 .

[21]  R. Ruffolo Chirality in α- and β-adrenoceptor agonists and antagonists , 2010 .

[22]  A. A. Banerji,et al.  Practical chemoenzymic synthesis of both enantiomers of propranolol , 1991 .

[23]  Aviva Rappaport,et al.  A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa , 1991 .

[24]  S. Borman Chirality Emerges as Key Issue in Pharmaceutical Research: Despite concerns that complexities associated with racemate use could force drastic changes in the way chiral drugs are developed and marketed, many now believe upcoming regulations are unlikely to be draconian , 1990 .

[25]  R. Sheldon Industrial synthesis of optically active compounds , 1990 .

[26]  Chi‐Huey Wong,et al.  Lipase-catalyzed irreversible transesterification using enol esters: XAD-8 immobilized lipoprotein lipase-catalyzed resolution of secondary alcohols , 1990 .

[27]  D. Bianchi,et al.  Anhydrides as acylating agents in lipase-catalyzed stereoselective esterification of racemic alcohols , 1988 .

[28]  T. Nishio,et al.  Highly efficient lipase-catalyzed asymmetric synthesis of chiral glycerol derivatives leading to practical synthesis of s-propranolol , 1988 .

[29]  K. Sharpless,et al.  Asymmetric epoxidation of allyl alcohol: efficient routes to homochiral .beta.-adrenergic blocking agents , 1986 .

[30]  Yi‐Fong Wang,et al.  Synthesis of (S)‐Propranolol by Chemicoenzymatic Approach , 1986 .

[31]  P. Seneci,et al.  Immobilized benzylpenicillin acylase: Application to the synthesis of optically active forms of carnitin and propranalol , 1986 .

[32]  A. Müller,et al.  [RES4]- AS AN UNUSUALLY STRONG OMICRON-ACCEPTOR LIGAND - [CL2FE(RES4)FECL2]2-, A LINEAR HETEROMETALLIC CLUSTER WITH AN ODD NUMBER OF ELECTRONS , 1986 .

[33]  N. Ohno,et al.  Preparation of optically active 1-acetoxy-2-aryloxypropionitriles and its application to a facile synthesis of (S)-(−)-propranolol , 1985 .

[34]  C. Sih,et al.  Quantitative analyses of biochemical kinetic resolutions of enantiomers , 1982 .

[35]  S. Iriuchijima,et al.  Asymmetric Hydrolysis of (±)-1,2-Diacetoxy-3-chloropropane and Its Related Compounds with Lipase. Synthesis of Optically Pure (S)-Propranolol , 1982 .

[36]  M. Kumada,et al.  Asymmetric synthesis of 2-amino-1-arylethanols by catalytic asymmetric hydrogenation , 1979 .

[37]  W. L. Nelson,et al.  ABSOLUTE CONFIGURATION OF GLYCEROL DERIVATIVES. 5. OXPRENOLOL ENANTIOMERS , 1978 .

[38]  R. E. Buchanan,et al.  Bergey's Manual of Determinative Bacteriology. , 1975 .

[39]  R. Howe,et al.  Beta-adrenergic blocking agents. 3. The optical isomers of pronethalol, propranolol, and several related compounds. , 1968, Journal of medicinal chemistry.

[40]  O. Stephenson The condensation of epichlorohydrin with monohydric phenols and with catechol , 1954 .