Vertical heterostructures of layered metal chalcogenides by van der Waals epitaxy.

We report a facile chemical vapor deposition (CVD) growth of vertical heterostructures of layered metal dichalcogenides (MX2) enabled by van der Waals epitaxy. Few layers of MoS2, WS2, and WSe2 were grown uniformly onto microplates of SnS2 under mild CVD reaction conditions (<500 °C) and the heteroepitaxy between them was confirmed using cross-sectional transmission electron microscopy (TEM) and unequivocally characterized by resolving the large-area Moiré patterns that appeared on the basal planes of microplates in conventional TEM (nonsectioned). Additional photoluminescence peaks were observed in heterostructures of MoS2-SnS2, which can be understood with electronic structure calculations to likely result from electronic coupling and charge separation between MoS2 and SnS2 layers. This work opens up the exploration of large-area heterostructures of diverse MX2 nanomaterials as the material platform for electronic structure engineering of atomically thin two-dimensional (2D) semiconducting heterostructures and device applications.

[1]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[2]  J. R. Schmidt,et al.  Generalization of Natural Bond Orbital Analysis to Periodic Systems: Applications to Solids and Surfaces via Plane-Wave Density Functional Theory. , 2012, Journal of chemical theory and computation.

[3]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[4]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[5]  Yu Zhang,et al.  Epitaxial monolayer MoS2 on mica with novel photoluminescence. , 2013, Nano letters.

[6]  J. Ge,et al.  Atmospheric pressure chemical vapor deposition: an alternative route to large-scale MoS2 and WS2 inorganic fullerene-like nanostructures and nanoflowers. , 2004, Chemistry.

[7]  R. H. Williams,et al.  Band structure and photoemission studies of SnS2 and SnSe2. I. Experimental , 1973 .

[8]  Song Jin,et al.  Hyperbranched PbS and PbSe nanowires and the effect of hydrogen gas on their synthesis. , 2007, Nano letters.

[9]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[10]  James R. McKone,et al.  Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes. , 2013, Journal of the American Chemical Society.

[11]  D. W. Pashley,et al.  Observation of Dislocations in Metals by Means of Moiré Patterns on Electron Micrographs , 1957, Nature.

[12]  Wolfram Jaegermann,et al.  Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule , 1999 .

[13]  Feng Ding,et al.  Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe₂ , TaS₂ , and TaSe₂. , 2013, Small.

[14]  S. Morrison,et al.  Single-layer MoS2 , 1986 .

[15]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[16]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[17]  Jiaguo Yu,et al.  Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[18]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[19]  S. Du,et al.  Yanget al. reply , 2004 .

[20]  A. Aruchamy,et al.  Photoelectrochemistry and photovoltaics of layered semiconductors , 1992 .

[21]  Ruitao Lv,et al.  Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. , 2012, Nano letters.

[22]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[23]  W. Jaegermann,et al.  Band lineup of a SnS2/SnSe2/SnS2 semiconductor quantum well structure prepared by van der Waals epitaxy , 1999 .

[24]  Song Jin,et al.  Epitaxial growth of hierarchical PbS nanowires , 2009 .

[25]  J. Arbiol,et al.  Incommensurate van der Waals epitaxy of nanowire arrays: a case study with ZnO on muscovite mica substrates. , 2012, Nano letters.

[26]  J. Wilson,et al.  Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides , 1975 .

[27]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[28]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[29]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[30]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[32]  Kazumasa Sunouchi,et al.  Fabrication and characterization of heterostructures with subnanometer thickness , 1984 .

[33]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[34]  K. Ko'smider,et al.  Electronic properties of the MoS 2 -WS 2 heterojunction , 2012, 1212.0111.

[35]  R. Tenne,et al.  Polyhedral and cylindrical structures of tungsten disulphide , 1992, Nature.

[36]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[37]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[38]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[39]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[40]  Reshef Tenne,et al.  Passivation of recombination centers in n‐WSe2 yields high efficiency (>14%) photoelectrochemical cell , 1985 .

[41]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[42]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[43]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[44]  Song Jin,et al.  Dislocation-Driven Nanowire Growth and Eshelby Twist , 2008, Science.

[45]  Mauricio Terrones,et al.  Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides , 2013, Scientific Reports.

[46]  Kazuki Yoshimura,et al.  Ultrasharp interfaces grown with Van der Waals epitaxy , 1986 .

[47]  Song Jin,et al.  Synthesis, characterization, and variable range hopping transport of pyrite (FeS₂) nanorods, nanobelts, and nanoplates. , 2013, ACS nano.

[48]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[49]  Florian Janetzko,et al.  Implementation of empirical dispersion corrections to density functional theory for periodic systems , 2012, J. Comput. Chem..

[50]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[51]  I. Parkin,et al.  The first single source deposition of tin sulfide coatings on glass: aerosol-assisted chemical vapour deposition using [Sn(SCH2CH2S)(2)] , 2001 .

[52]  Yu Huang,et al.  Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters , 2012, Nature materials.

[53]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[54]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[55]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[56]  Fei Meng,et al.  Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. , 2013, Journal of the American Chemical Society.

[57]  Atsushi Koma,et al.  Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system , 1992 .

[58]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[59]  Janna Börner,et al.  Real-time imaging of methane gas leaks using a single-pixel camera. , 2017, Optics express.

[60]  R. Tenne,et al.  Recent progress in the research of inorganic fullerene-like nanoparticles and inorganic nanotubes. , 2010, Chemical Society reviews.

[61]  Ib Chorkendorff,et al.  Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution , 2012 .

[62]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[63]  D. W. Pashley,et al.  Moiré patterns on electron micrographs, and their application to the study of dislocations in metals , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[64]  Song Jin,et al.  Formation of PbS nanowire pine trees driven by screw dislocations. , 2009, Journal of the American Chemical Society.

[65]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.