Matrix-Variate Factor Analysis and Its Applications

Factor analysis (FA) seeks to reveal the relationship between an observed vector variable and a latent variable of reduced dimension. It has been widely used in many applications involving high-dimensional data, such as image representation and face recognition. An intrinsic limitation of FA lies in its potentially poor performance when the data dimension is high, a problem known as curse of dimensionality. Motivated by the fact that images are inherently matrices, we develop, in this brief, an FA model for matrix-variate variables and present an efficient parameter estimation algorithm. Experiments on both toy and real-world image data demonstrate that the proposed matrix-variant FA model is more efficient and accurate than the classical FA approach, especially when the observed variable is high-dimensional and the samples available are limited.

[1]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[2]  Larry A. Rendell,et al.  Constructive Induction On Decision Trees , 1989, IJCAI.

[3]  Donald B. Rubin,et al.  Max-imum Likelihood from Incomplete Data , 1972 .

[4]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[5]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[6]  Xiao-Li Meng,et al.  Maximum likelihood estimation via the ECM algorithm: A general framework , 1993 .

[7]  D. Rubin,et al.  Parameter expansion to accelerate EM : The PX-EM algorithm , 1997 .

[8]  Manuel Graña,et al.  Experiments of Fast Learning with High Order Boltzmann Machines , 2004, Applied Intelligence.

[9]  Alan F. Murray,et al.  Continuous-valued probabilistic behavior in a VLSI generative model , 2006, IEEE Transactions on Neural Networks.

[10]  Michael I. Jordan,et al.  Learning in Boltzmann Trees , 1994, Neural Computation.

[11]  Harry Shum,et al.  A two-step approach to hallucinating faces: global parametric model and local nonparametric model , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[12]  Geoffrey E. Hinton,et al.  Recognizing Handwritten Digits Using Mixtures of Linear Models , 1994, NIPS.

[13]  C. Spearman General intelligence Objectively Determined and Measured , 1904 .

[14]  Alex Pentland,et al.  Bayesian face recognition , 2000, Pattern Recognit..

[15]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[16]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[17]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[18]  Susan T. Dumais,et al.  Using Linear Algebra for Intelligent Information Retrieval , 1995, SIAM Rev..

[19]  Harry Shum,et al.  Concurrent subspaces analysis , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[20]  Katya Scheinberg,et al.  Efficient SVM Training Using Low-Rank Kernel Representations , 2002, J. Mach. Learn. Res..

[21]  David J. Kriegman,et al.  Recognition using class specific linear projection , 1997 .

[22]  Demetri Terzopoulos,et al.  Multilinear subspace analysis of image ensembles , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[23]  Manuel Graña,et al.  The high-order Boltzmann machine: learned distribution and topology , 1995, IEEE Trans. Neural Networks.

[24]  Herman Rubin,et al.  Statistical Inference in Factor Analysis , 1956 .

[25]  Jieping Ye,et al.  Generalized Low Rank Approximations of Matrices , 2005, Machine Learning.

[26]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[27]  D. Rubin,et al.  Parameter expansion to accelerate EM: The PX-EM algorithm , 1998 .

[28]  Kyu Tae Park,et al.  Existence and classification of Hadamard matrices , 1998, ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344).

[29]  Christopher M. Bishop,et al.  A Hierarchical Latent Variable Model for Data Visualization , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.