Matrix-Variate Factor Analysis and Its Applications
暂无分享,去创建一个
Shuicheng Yan | Thomas S. Huang | James T. Kwok | Xianchao Xie | Thomas S. Huang | Shuicheng Yan | J. Kwok | X. Xie | Xianchao Xie
[1] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[2] Larry A. Rendell,et al. Constructive Induction On Decision Trees , 1989, IJCAI.
[3] Donald B. Rubin,et al. Max-imum Likelihood from Incomplete Data , 1972 .
[4] Michael E. Tipping,et al. Probabilistic Principal Component Analysis , 1999 .
[5] Christopher M. Bishop,et al. Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.
[6] Xiao-Li Meng,et al. Maximum likelihood estimation via the ECM algorithm: A general framework , 1993 .
[7] D. Rubin,et al. Parameter expansion to accelerate EM : The PX-EM algorithm , 1997 .
[8] Manuel Graña,et al. Experiments of Fast Learning with High Order Boltzmann Machines , 2004, Applied Intelligence.
[9] Alan F. Murray,et al. Continuous-valued probabilistic behavior in a VLSI generative model , 2006, IEEE Transactions on Neural Networks.
[10] Michael I. Jordan,et al. Learning in Boltzmann Trees , 1994, Neural Computation.
[11] Harry Shum,et al. A two-step approach to hallucinating faces: global parametric model and local nonparametric model , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.
[12] Geoffrey E. Hinton,et al. Recognizing Handwritten Digits Using Mixtures of Linear Models , 1994, NIPS.
[13] C. Spearman. General intelligence Objectively Determined and Measured , 1904 .
[14] Alex Pentland,et al. Bayesian face recognition , 2000, Pattern Recognit..
[15] Yoshua Bengio,et al. Gradient-based learning applied to document recognition , 1998, Proc. IEEE.
[16] David J. Kriegman,et al. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.
[17] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[18] Susan T. Dumais,et al. Using Linear Algebra for Intelligent Information Retrieval , 1995, SIAM Rev..
[19] Harry Shum,et al. Concurrent subspaces analysis , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
[20] Katya Scheinberg,et al. Efficient SVM Training Using Low-Rank Kernel Representations , 2002, J. Mach. Learn. Res..
[21] David J. Kriegman,et al. Recognition using class specific linear projection , 1997 .
[22] Demetri Terzopoulos,et al. Multilinear subspace analysis of image ensembles , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..
[23] Manuel Graña,et al. The high-order Boltzmann machine: learned distribution and topology , 1995, IEEE Trans. Neural Networks.
[24] Herman Rubin,et al. Statistical Inference in Factor Analysis , 1956 .
[25] Jieping Ye,et al. Generalized Low Rank Approximations of Matrices , 2005, Machine Learning.
[26] Geoffrey E. Hinton,et al. A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..
[27] D. Rubin,et al. Parameter expansion to accelerate EM: The PX-EM algorithm , 1998 .
[28] Kyu Tae Park,et al. Existence and classification of Hadamard matrices , 1998, ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344).
[29] Christopher M. Bishop,et al. A Hierarchical Latent Variable Model for Data Visualization , 1998, IEEE Trans. Pattern Anal. Mach. Intell..
[30] David J. Kriegman,et al. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.