Effect of Pre-Treatment on Copper Precipitation Characteristics in a Copper-Alloyed Interstitial Free Steel Studied by Thermoelectric Power Measurement

[1]  W. Marsden I and J , 2012 .

[2]  O. N. Mohanty,et al.  Biaxial Stretching Behavior of a Copper-Alloyed Interstitial-Free Steel by Bulge Test , 2010 .

[3]  O. N. Mohanty,et al.  Laboratory Investigations on Copper‐alloyed Interstitial Free Steel – Part II: Effect of Coiling Temperature , 2007 .

[4]  O. N. Mohanty,et al.  Laboratory Investigations on Copper‐alloyed Interstitial Free Steel – Part I: Effect of Annealing , 2007 .

[5]  O. N. Mohanty,et al.  Development of high strength interstitial free steel by copper precipitation hardening , 2007 .

[6]  O. N. Mohanty,et al.  Effect of copper on annealing characteristics of interstitial free steels , 2007 .

[7]  O. N. Mohanty,et al.  Aging response and strength formability parameters of hot rolled copper alloyed interstitial free steel , 2007 .

[8]  O. N. Mohanty,et al.  Thermoelectric power studies of copper precipitation in a new interstitial-free steel , 2006 .

[9]  V. Massardier,et al.  Low-temperature solubility of copper in iron: experimental study using thermoelectric power, small angle X-ray scattering and tomographic atom probe , 2005 .

[10]  X. Kleber,et al.  Study of molybdenum precipitation in steels using thermoelectric power measurement , 2004 .

[11]  V. Massardier,et al.  Comparison of the evaluation of the carbon content in solid solution in extra-mild steels by thermoelectric power and by internal friction , 2004 .

[12]  V. Massardier,et al.  Quantitative evaluation of the interstitial content (C and/or N) in solid solution in extra-mild steels by thermoelectric power measurements , 2004 .

[13]  V. Massardier,et al.  Kinetic and microstructural study of aluminium nitride precipitation in a low carbon aluminium-killed steel , 2003 .

[14]  K. Asakura,et al.  Suppression of surface hot shortness due to Cu in recycled steels : Environmental benign manufacturing and material processing toward dematerialization , 2002 .

[15]  J. Merlin,et al.  Study of ageing in strained ultra and extra low carbon steels by thermoelectric power measurement , 2001 .

[16]  T. Senuma Physical Metallurgy of Modern High Strength Steel Sheets , 2001 .

[17]  S. Hoile,et al.  Processing and properties of mild interstitial free steels , 2000 .

[18]  V. Massardier,et al.  Precipitation evolution during the annealing of an interstitial-free steel , 2000 .

[19]  M. Sugiyama,et al.  Precipitation and Phase Transformation of Copper Particles in Low Alloy Ferritic and Martensitic Steels , 1999 .

[20]  K. Tsunoyama Metallurgy of Ultra-Low-C Interstitial-Free Sheet Steel for Automobile Applications , 1998 .

[21]  C. Garcia,et al.  Precipitation behavior in ultra-low-carbon steels containing titanium and niobium , 1997 .

[22]  R. Borrelly,et al.  Study of aluminium nitride precipitation in pure FeAlN alloy by thermoelectric power measurements , 1997 .

[23]  D. Vanderschueren,et al.  Solubility Products of Titanium Sulphide and Carbosulphide in Ultra-low Carbon Steels , 1996 .

[24]  Y. Bréchet,et al.  Thermal ageing of an Fe‒Cu alloy: Microstructural evolution and precipitation hardening , 1996 .

[25]  P. Pareige,et al.  Direct observation of copper precipitation in a neutron irradiated FeCu alloy by 3D atomic tomography , 1995 .

[26]  D. Llewellyn Copper in steels , 1995 .

[27]  Hiroshi Takechi,et al.  Metallurgical Aspects on Interstitial Free Sheet Steel From Industrial Viewpoints , 1994 .

[28]  F. Maury,et al.  Copper precipitation in FeCu, FeCuMn, and FeCuNi dilute alloys followed by X-ray absorption spectroscopy , 1994 .

[29]  H. Hougardy,et al.  On the mechanism of bake-hardening , 1993 .

[30]  D. Blavette,et al.  An atom probe for three-dimensional tomography , 1993, Nature.

[31]  Kevin J. Roberts,et al.  The Structure and Hardening Mechanism of Copper Precipitation in Thermally Aged or Irradiated Fe-Cu and Fe-Cu-Ni Model Alloys , 1992 .

[32]  G. Smith,et al.  Transmission electron microscope investigations of the structure of copper precipitates in thermally-aged Fe—Cu and Fe—Cu—Ni , 1991 .

[33]  K. Roberts,et al.  A fluorescence EXAFS study of the structure of copper-rich precipitates in Fe–Cu and Fe–Cu–Ni alloys , 1990 .

[34]  R. Borrelly,et al.  Sensibilité du pouvoir thermoélectrique à l'état microstructural du fer et du fer-azote , 1985 .

[35]  J. Merlin,et al.  Precipitation effects on thermopower in Al-Cu alloys , 1984 .

[36]  H. Abe,et al.  Thermoelectric Power versus Electrical Conductivity Plot for Annealing Process in Low-carbon Aluminium-killed Steel , 1979 .

[37]  D. Greig,et al.  Thermoelectric Power of Metals , 1976 .

[38]  S. R. Goodman,et al.  An FIM-atom probe study of the precipitation of copper from lron-1.4 at. pct copper. Part I: Field-ion microscopy , 1973 .

[39]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[40]  C. Gorter,et al.  Bemerkungen über thermokraft und widerstand , 1935 .