Helical CR structures and sub-Riemannian geodesics

A helical CR structure is a decomposition of a real Euclidean space into an even-dimensional horizontal subspace and its orthogonal vertical complement, together with an almost complex structure on the horizontal space and a marked vector in the vertical space. We prove an equivalence between such structures and step-two Carnot groups equipped with a distinguished normal geodesic, and also between such structures and smooth real curves whose derivatives have constant Euclidean norm. As a consequence, we relate step-two Carnot groups equipped with sub-Riemannian geodesics with this family of curves. The restriction to the unit circle of certain planar homogeneous polynomial mappings gives an instructive class of examples. We describe these examples in detail.

[1]  Herman Gluck,et al.  Higher Curvatures of Curves in Euclidean Space, II , 1966 .

[2]  B. Gaveau Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents , 1977 .

[3]  A. Bellaïche The tangent space in sub-riemannian geometry , 1994 .

[4]  astronomy Physics,et al.  Principe de Moindre Action , 2010 .

[5]  NORMAL FORMS FOR ORTHOGONAL SIMILARITY CLASSES OF SKEW-SYMMETRIC MATRICES , 2006, math/0603245.

[6]  R. Montgomery A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .

[7]  R. Strichartz Sub-Riemannian geometry , 1986 .

[8]  F. Lin,et al.  Legendrian energy minimizers. Part I: Heisenberg group target , 2001 .

[9]  E. W. Bbookbtt,et al.  Nonlinear Control Theory and Differential Geometry , 2010 .

[10]  R. Brockett Control Theory and Singular Riemannian Geometry , 1982 .

[11]  Han Peters,et al.  Degree estimates for polynomials constant on a hyperplane , 2006, math/0609713.

[12]  Ralph Duncan James,et al.  Proceedings of the International Congress of Mathematicians , 1975 .

[13]  R. Strichartz Corrections to: ``Sub-Riemannian geometry'' , 1989 .

[14]  A note on Carnot geodesics in nilpotent Lie groups , 1995, math/9505217.

[15]  E. Stein,et al.  Hypoelliptic differential operators and nilpotent groups , 1976 .

[16]  Scott D. Pauls,et al.  An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem , 2007 .

[17]  John P. D'Angelo,et al.  Several Complex Variables and the Geometry of Real Hypersurfaces , 1993 .

[18]  J. D'Angelo A monotonicity result for volumes of holomorphic images , 2006 .

[19]  J. D'Angelo Invariant holomorphic mappings , 1996 .

[20]  T. Bloom,et al.  On ‘type’ conditions for generic real submanifolds of ℂn , 1977 .