Quasipotential and exit time for 2D Stochastic Navier-Stokes equations driven by space time white noise

We are dealing with the Navier-Stokes equation in a bounded regular domain $$\mathcal {O}$$O of $$\mathbb {R}^2$$R2, perturbed by an additive Gaussian noise $$\partial w^{Q_\delta }/\partial t$$∂wQδ/∂t, which is white in time and colored in space. We assume that the correlation radius of the noise gets smaller and smaller as $$\delta \searrow 0$$δ↘0, so that the noise converges to the white noise in space and time. For every $$\delta >0$$δ>0 we introduce the large deviation action functional $$S^\delta _{T}$$STδ and the corresponding quasi-potential $$U_\delta $$Uδ and, by using arguments from relaxation and $$\Gamma $$Γ-convergence we show that $$U_\delta $$Uδ converges to $$U=U_0$$U=U0, in spite of the fact that the Navier-Stokes equation has no meaning in the space of square integrable functions, when perturbed by space-time white noise. Moreover, in the case of periodic boundary conditions the limiting functional $$U$$U is explicitly computed. Finally, we apply these results to estimate of the asymptotics of the expected exit time of the solution of the stochastic Navier-Stokes equation from a basin of attraction of an asymptotically stable point for the unperturbed system.

[1]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[2]  Zdzisław Brzeźniak,et al.  Stochastic partial differential equations in M-type 2 Banach spaces , 1995 .

[3]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[4]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[5]  Daisuke Fujiwara,et al.  An L_r-theorem of the Helmholtz decomposition of vector fields , 1977 .

[6]  Z. Brzeźniak On sobolev and besov spaces regularityof brownian paths , 1996 .

[7]  L. Nikolova,et al.  On ψ- interpolation spaces , 2009 .

[8]  Z. Brzeźniak,et al.  Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces , 1999 .

[9]  S. Cerrai,et al.  Smoluchowski-Kramers approximation and large deviations for infinite dimensional non-gradient systems with applications to the exit problem , 2014, 1403.5745.

[10]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[11]  Jacques Simon,et al.  Sobolev, Besov and Nikolskii fractional spaces: Imbeddings and comparisons for vector valued spaces on an interval , 1990 .

[12]  A. Bensoussan,et al.  Equations aux derivees partielles stochastiques non lineaires , 1972 .

[13]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[14]  Pierre Gilles Lemarié-Rieusset,et al.  Unicité dans L3(R3) et d'autres espaces fonctionnels limites pour Navier-Stokes. , 2000 .

[15]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[16]  R. Seeley Interpolation in $L^{p}$ with boundary conditions , 1972 .

[17]  A. Fursikov,et al.  Mathematical Problems of Statistical Hydromechanics , 1988 .

[18]  Zdzislaw Brzezniak,et al.  Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains , 2006 .

[19]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[20]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[21]  A. Millet,et al.  Uniform large deviations for parabolic SPDEs and applications , 1997 .

[22]  G. Prato,et al.  Two-Dimensional Navier--Stokes Equations Driven by a Space--Time White Noise , 2002 .

[23]  R. Temam Behaviour at Time t=0 of the Solutions of Semi-Linear Evolution Equations. , 1982 .

[24]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[25]  Franco Flandoli,et al.  Dissipativity and invariant measures for stochastic Navier-Stokes equations , 1994 .

[26]  J. Zabczyk,et al.  On minimum energy problems , 1991 .

[27]  Hantaek Bae Navier-Stokes equations , 1992 .

[28]  Robert V. Kohn,et al.  Magnetic Elements at Finite Temperature and Large Deviation Theory , 2005, Journal of nonlinear science.

[29]  Freddy Bouchet,et al.  Langevin Dynamics, Large Deviations and Instantons for the Quasi-Geostrophic Model and Two-Dimensional Euler Equations , 2014, 1403.0216.

[30]  Lamberto Cattabriga,et al.  Su un problema al contorno relativo al sistema di equazioni di Stokes , 1961 .

[31]  P. Lions,et al.  UNIQUENESS OF MILD SOLUTIONS OF THE NAVIER-STOKES SYSTEM IN LN , 2001 .

[32]  J. Zabczyk On large deviations for stochastic evolution equations , 1989 .

[33]  Michael Struwe,et al.  Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .

[34]  Michael Salins,et al.  Smoluchowski-Kramers approximation and large deviations for infinite dimensional gradient systems , 2014, Asymptot. Anal..

[35]  G. Laumon,et al.  A Series of Modern Surveys in Mathematics , 2000 .

[36]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[37]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[38]  F. Flandoli,et al.  Kolmogorov Equation Associated to a Stochastic Navier–Stokes Equation , 1998 .

[39]  Dariusz Gatarek,et al.  Martingale and stationary solutions for stochastic Navier-Stokes equations , 1995 .

[40]  A. Ambrosetti,et al.  Nonlinear analysis : a tribute in honour of Giovanni Prodi , 1991 .

[41]  M. Czubak,et al.  PSEUDODIFFERENTIAL OPERATORS , 2020, Introduction to Partial Differential Equations.

[42]  Mark Freidlin,et al.  APPROXIMATION OF QUASI-POTENTIALS AND EXIT PROBLEMS FOR MULTIDIMENSIONAL RDE'S WITH NOISE , 2011 .

[43]  M. Métivier Stochastic partial differential equations in infinite dimensional spaces , 2013 .

[44]  Sri Sritharan,et al.  Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise , 2006 .

[45]  B. Goldys,et al.  On weak solutions of stochastic equations in Hilbert spaces , 1994 .

[46]  Gianni Dal Maso,et al.  An Introduction to [gamma]-convergence , 1993 .

[47]  Z. Brzeźniak On stochastic convolution in banach spaces and applications , 1997 .