Quasipotential and exit time for 2D Stochastic Navier-Stokes equations driven by space time white noise
暂无分享,去创建一个
M. Freidlin | Z. Brzeźniak | S. Cerrai | Z. Brzeźniak | S. Cerrai | M. Freidlin | M. Freidlin | Zdzisław Brzeźniak
[1] Amir Dembo,et al. Large Deviations Techniques and Applications , 1998 .
[2] Zdzisław Brzeźniak,et al. Stochastic partial differential equations in M-type 2 Banach spaces , 1995 .
[3] M. Freidlin,et al. Random Perturbations of Dynamical Systems , 1984 .
[4] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[5] Daisuke Fujiwara,et al. An L_r-theorem of the Helmholtz decomposition of vector fields , 1977 .
[6] Z. Brzeźniak. On sobolev and besov spaces regularityof brownian paths , 1996 .
[7] L. Nikolova,et al. On ψ- interpolation spaces , 2009 .
[8] Z. Brzeźniak,et al. Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces , 1999 .
[9] S. Cerrai,et al. Smoluchowski-Kramers approximation and large deviations for infinite dimensional non-gradient systems with applications to the exit problem , 2014, 1403.5745.
[10] R. Temam. Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .
[11] Jacques Simon,et al. Sobolev, Besov and Nikolskii fractional spaces: Imbeddings and comparisons for vector valued spaces on an interval , 1990 .
[12] A. Bensoussan,et al. Equations aux derivees partielles stochastiques non lineaires , 1972 .
[13] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[14] Pierre Gilles Lemarié-Rieusset,et al. Unicité dans L3(R3) et d'autres espaces fonctionnels limites pour Navier-Stokes. , 2000 .
[15] R. Temam. Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .
[16] R. Seeley. Interpolation in $L^{p}$ with boundary conditions , 1972 .
[17] A. Fursikov,et al. Mathematical Problems of Statistical Hydromechanics , 1988 .
[18] Zdzislaw Brzezniak,et al. Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains , 2006 .
[19] T. Kurtz,et al. Stochastic equations in infinite dimensions , 2006 .
[20] E. Boschi. Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .
[21] A. Millet,et al. Uniform large deviations for parabolic SPDEs and applications , 1997 .
[22] G. Prato,et al. Two-Dimensional Navier--Stokes Equations Driven by a Space--Time White Noise , 2002 .
[23] R. Temam. Behaviour at Time t=0 of the Solutions of Semi-Linear Evolution Equations. , 1982 .
[24] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[25] Franco Flandoli,et al. Dissipativity and invariant measures for stochastic Navier-Stokes equations , 1994 .
[26] J. Zabczyk,et al. On minimum energy problems , 1991 .
[27] Hantaek Bae. Navier-Stokes equations , 1992 .
[28] Robert V. Kohn,et al. Magnetic Elements at Finite Temperature and Large Deviation Theory , 2005, Journal of nonlinear science.
[29] Freddy Bouchet,et al. Langevin Dynamics, Large Deviations and Instantons for the Quasi-Geostrophic Model and Two-Dimensional Euler Equations , 2014, 1403.0216.
[30] Lamberto Cattabriga,et al. Su un problema al contorno relativo al sistema di equazioni di Stokes , 1961 .
[31] P. Lions,et al. UNIQUENESS OF MILD SOLUTIONS OF THE NAVIER-STOKES SYSTEM IN LN , 2001 .
[32] J. Zabczyk. On large deviations for stochastic evolution equations , 1989 .
[33] Michael Struwe,et al. Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .
[34] Michael Salins,et al. Smoluchowski-Kramers approximation and large deviations for infinite dimensional gradient systems , 2014, Asymptot. Anal..
[35] G. Laumon,et al. A Series of Modern Surveys in Mathematics , 2000 .
[36] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[37] Jöran Bergh,et al. Interpolation Spaces: An Introduction , 2011 .
[38] F. Flandoli,et al. Kolmogorov Equation Associated to a Stochastic Navier–Stokes Equation , 1998 .
[39] Dariusz Gatarek,et al. Martingale and stationary solutions for stochastic Navier-Stokes equations , 1995 .
[40] A. Ambrosetti,et al. Nonlinear analysis : a tribute in honour of Giovanni Prodi , 1991 .
[41] M. Czubak,et al. PSEUDODIFFERENTIAL OPERATORS , 2020, Introduction to Partial Differential Equations.
[42] Mark Freidlin,et al. APPROXIMATION OF QUASI-POTENTIALS AND EXIT PROBLEMS FOR MULTIDIMENSIONAL RDE'S WITH NOISE , 2011 .
[43] M. Métivier. Stochastic partial differential equations in infinite dimensional spaces , 2013 .
[44] Sri Sritharan,et al. Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise , 2006 .
[45] B. Goldys,et al. On weak solutions of stochastic equations in Hilbert spaces , 1994 .
[46] Gianni Dal Maso,et al. An Introduction to [gamma]-convergence , 1993 .
[47] Z. Brzeźniak. On stochastic convolution in banach spaces and applications , 1997 .