The Empirical Content of Binary Choice Models

Empirical demand models used for counterfactual predictions and welfare analysis must be rationalizable, i.e. theoretically consistent with utility maximization by heterogeneous consumers. We show that for binary choice under general unobserved heterogeneity, rationalizability is equivalent to a pair of Slutsky-like shape-restrictions on choice-probability functions. The forms of these restrictions differ from Slutsky-inequalities for continuous goods. Unlike McFadden-Richter's stochastic revealed preference, our shape-restrictions (a) are global, i.e. their forms do not depend on which and how many budget-sets are observed, (b) are closed-form, hence easy to impose on parametric/semi/non-parametric models in practical applications, and (c) provide computationally simple, theory-consistent bounds on demand and welfare predictions on counterfactual budget-sets.

[1]  Jörg Stoye,et al.  Revealed Preferences in a Heterogeneous Population , 2014, Review of Economics and Statistics.

[2]  D. Chetverikov TESTING REGRESSION MONOTONICITY IN ECONOMETRIC MODELS , 2012, Econometric Theory.

[3]  Holger Dette,et al.  Testing Multivariate Economic Restrictions Using Quantiles: The Example of Slutsky Negative Semidefiniteness , 2011 .

[4]  R. Spady,et al.  AN EFFICIENT SEMIPARAMETRIC ESTIMATOR FOR BINARY RESPONSE MODELS , 1993 .

[5]  Aaron K. Han Non-parametric analysis of a generalized regression model: the maximum rank correlation estimator , 1987 .

[6]  K. Train Discrete Choice Methods with Simulation , 2003 .

[7]  P. Hall,et al.  Linear functions , 2018, Algebra and Geometry.

[8]  Stefan Hoderlein How many consumers are rational , 2009 .

[9]  Ferruccio Fontanella,et al.  Shape-preserving bivariate interpolation , 1990 .

[10]  Juan Manuel Peña,et al.  Tensor-product monotonicity preservation , 1998, Adv. Comput. Math..

[11]  J. Powell,et al.  c ○ 2004 The Review of Economic Studies Limited Endogeneity in Semiparametric Binary Response Models , 2001 .

[12]  A. Lewbel,et al.  Demand Systems with and without Errors , 2001 .

[13]  G. Imbens,et al.  Identification and Estimation of Triangular Simultaneous Equations Models without Additivity , 2002 .

[14]  C. Manski MAXIMUM SCORE ESTIMATION OF THE STOCHASTIC UTILITY MODEL OF CHOICE , 1975 .

[15]  Rosa L. Matzkin Nonparametric and Distribution-Free Estimation of the Binary Threshold Crossing and the Binary Choice Models , 1992 .

[16]  Nonparametric Welfare Analysis for Discrete Choice , 2015 .

[17]  R. Sherman,et al.  Rank estimators for monotonic index models , 1998 .

[18]  Ying-Ying Lee,et al.  Working Papers in Economics : 1882 APPLIED WELFARE ANALYSIS FOR DISCRETE CHOICE WITH INTERVAL-DATA ON INCOME , 2019 .

[19]  D. McFadden Revealed stochastic preference: a synthesis , 2005 .

[20]  André de Palma,et al.  Discrete Choice Theory of Product Differentiation , 1995 .

[21]  Yuichi Kitamura,et al.  Nonparametric Analysis of Random Utility Models , 2016, 1606.04819.

[22]  Ying-Ying Lee,et al.  Applied Welfare Analysis for Discrete Choice with Interval-Data on Income , 2019, Journal of Econometrics.

[23]  Subhashis Ghosal,et al.  TESTING MONOTONICITY OF REGRESSION By , 1998 .

[24]  Debopam Bhattacharya A PERMUTATION-BASED ESTIMATOR FOR MONOTONE INDEX MODELS , 2008, Econometric Theory.

[25]  Richard Blundell,et al.  Endogeneity in Nonparametric and Semiparametric Regression Models , 2022 .

[26]  M. C. Jones,et al.  Testing Monotonicity of Regression , 1998 .

[27]  J. J. Deely,et al.  Joint Continuity of Monotonic Functions , 1969 .

[28]  W. Newey,et al.  Individual Heterogeneity and Average Welfare , 2016 .

[29]  Debopam Bhattacharya Empirical Welfare Analysis for Discrete Choice: Some General Results , 2017 .

[30]  D. McFadden Conditional logit analysis of qualitative choice behavior , 1972 .

[31]  Michael Woodroofe,et al.  Probability with applications , 1976 .

[32]  C. Leake Discrete Choice Theory of Product Differentiation , 1995 .