Biomaterials and Tissue Engineering Approaches using Glycosaminoglycans for Tissue Repair: Lessons Learned from the Native Extracellular Matrix.

[1]  A. Petrella,et al.  The combination of mesoglycan and VEGF promotes skin wound repair by enhancing the activation of endothelial cells and fibroblasts and their cross-talk , 2022, Scientific Reports.

[2]  Enjuro Harunari,et al.  Hypoxia modulates human mast cell adhesion to hyaluronic acid , 2021, Immunologic Research.

[3]  Z. Liu,et al.  Biological role of heparan sulfate in osteogenesis: A review. , 2021, Carbohydrate polymers.

[4]  Zhouyuan Yang,et al.  Delivery of MiR335‐5p‐Pendant Tetrahedron DNA Nanostructures Using an Injectable Heparin Lithium Hydrogel for Challenging Bone Defects in Steroid‐Associated Osteonecrosis , 2021, Advanced healthcare materials.

[5]  R. Bacabac,et al.  K-Carrageenan Stimulates Pre-Osteoblast Proliferation and Osteogenic Differentiation: A Potential Factor for the Promotion of Bone Regeneration? , 2021, Molecules.

[6]  A. Jaffa,et al.  Sulfated alginate/polycaprolactone double-emulsion nanoparticles for enhanced delivery of heparin-binding growth factors in wound healing applications. , 2021, Colloids and surfaces. B, Biointerfaces.

[7]  P. Janmey,et al.  Glycosaminoglycans modulate long-range mechanical communication between cells in collagen networks , 2021, bioRxiv.

[8]  Meifeng Zhu,et al.  Microchannelled alkylated chitosan sponge to treat noncompressible hemorrhages and facilitate wound healing , 2021, Nature Communications.

[9]  M. Baker,et al.  Glycosaminoglycans: From Vascular Physiology to Tissue Engineering Applications , 2021, Frontiers in Chemistry.

[10]  T. Hanawa,et al.  Wound Healing Promotion by Hyaluronic Acid: Effect of Molecular Weight on Gene Expression and In Vivo Wound Closure , 2021, Pharmaceuticals.

[11]  Anran Sheng,et al.  Glycosaminoglycan-Protein Interactions and Their Roles in Human Disease , 2021, Frontiers in Molecular Biosciences.

[12]  B. Heng,et al.  Biomimetic strategies for tendon/ligament-to-bone interface regeneration , 2021, Bioactive materials.

[13]  A. Shavandi,et al.  Advances in Growth Factor Delivery for Bone Tissue Engineering , 2021, International journal of molecular sciences.

[14]  A. Panitch,et al.  Glycosaminoglycans in Tissue Engineering: A Review , 2020, Biomolecules.

[15]  Jung Soo Lee,et al.  A biomimetic collagen-bone granule-heparan sulfate combination scaffold for BMP2 delivery. , 2020, Gene.

[16]  H. M. Geller,et al.  The Role of Chondroitin Sulfate Proteoglycans in Nervous System Development , 2020, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[17]  Lucas R. Smith,et al.  Distinct effects of different matrix proteoglycans on collagen fibrillogenesis and cell-mediated collagen reorganization , 2020, Scientific Reports.

[18]  Y. M. Coulson-Thomas,et al.  Distribution and Function of Glycosaminoglycans and Proteoglycans in the Development, Homeostasis and Pathology of the Ocular Surface , 2020, Frontiers in Cell and Developmental Biology.

[19]  Sylvain D. Vallet,et al.  Glycosaminoglycan–Protein Interactions: The First Draft of the Glycosaminoglycan Interactome , 2020, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[20]  Nathaniel S. Hwang,et al.  Sequential growth factor releasing double cryogel system for enhanced bone regeneration. , 2020, Biomaterials.

[21]  D. Morrison,et al.  Heparin-functionalised hydrogels as growth factor-signalling substrates. , 2020, Journal of biomedical materials research. Part A.

[22]  C. Werner,et al.  Tuning the Local Availability of VEGF within Glycosaminoglycan‐Based Hydrogels to Modulate Vascular Endothelial Cell Morphogenesis , 2020, Advanced Functional Materials.

[23]  S. Miguel,et al.  Hyaluronic acid-Based wound dressings: A review. , 2020, Carbohydrate polymers.

[24]  T. Arinzeh,et al.  Comparative Study of Electrospun Scaffolds Containing Native GAGs and a GAG Mimetic for Human Mesenchymal Stem Cell Chondrogenesis , 2020, Annals of Biomedical Engineering.

[25]  E. A. Cavalcanti-Adam,et al.  Heparan sulfate co-immobilized with cRGD ligands and BMP2 on biomimetic platforms promotes BMP2-mediated osteogenic differentiation. , 2020, Acta biomaterialia.

[26]  B. Harley,et al.  Anisotropic mineralized collagen scaffolds accelerate osteogenic response in a glycosaminoglycan-dependent fashion , 2020, bioRxiv.

[27]  Yan Zhang,et al.  Heparan sulfate loaded hydroxyapatite-polylactic acid scaffolds with 3D printing for bone defect repair. , 2020, International journal of biological macromolecules.

[28]  R. Guldberg,et al.  Heparin-mediated delivery of bone morphogenetic protein-2 improves spatial localization of bone regeneration , 2020, Science Advances.

[29]  M. Raghunath,et al.  Enhancing the Efficacy of Stem Cell Therapy with Glycosaminoglycans , 2019, Stem cell reports.

[30]  Zhifeng Xiao,et al.  Heparan sulfate proteoglycan promotes fibroblast growth factor-2 function for ischemic heart repair. , 2019, Biomaterials science.

[31]  M. Stevens,et al.  Glycosaminoglycan-based biomaterials for growth factor and cytokine delivery: Making the right choices , 2019, Journal of controlled release : official journal of the Controlled Release Society.

[32]  L. Applegate,et al.  An injectable heparin-conjugated hyaluronan scaffold for local delivery of Transforming Growth Factor β1 promotes successful chondrogenesis. , 2019, Acta biomaterialia.

[33]  T. Arinzeh,et al.  Investigation of glycosaminoglycan mimetic scaffolds for neurite growth. , 2019, Acta biomaterialia.

[34]  D. Zeugolis,et al.  Carrageenan enhances chondrogenesis and osteogenesis in human bone marrow stem cell culture. , 2019, European cells & materials.

[35]  P. Azadi,et al.  N-terminal syndecan-2 domain selectively enhances 6-O heparan sulfate chains sulfation and promotes VEGFA165-dependent neovascularization , 2019, Nature Communications.

[36]  R. Jayakumar,et al.  Injectable angiogenic and osteogenic carrageenan nanocomposite hydrogel for bone tissue engineering. , 2019, International journal of biological macromolecules.

[37]  R. Guldberg,et al.  Chondroitin Sulfate Glycosaminoglycan Scaffolds for Cell and Recombinant Protein‐Based Bone Regeneration , 2019, Stem cells translational medicine.

[38]  T. Wight A role for proteoglycans in vascular disease. , 2018, Matrix biology : journal of the International Society for Matrix Biology.

[39]  L. Puskás,et al.  Syndecan‐4 influences mammalian myoblast proliferation by modulating myostatin signalling and G1/S transition , 2018, FEBS letters.

[40]  F. Alshomer,et al.  Advances in Tendon and Ligament Tissue Engineering: Materials Perspective , 2018, Journal of Materials.

[41]  G. Pitarresi,et al.  Hyaluronic acid and α-elastin based hydrogel for three dimensional culture of vascular endothelial cells , 2018 .

[42]  L. Kjellén,et al.  Specificity of glycosaminoglycan-protein interactions. , 2018, Current opinion in structural biology.

[43]  Ilídio J Correia,et al.  Recent advances on antimicrobial wound dressing: A review. , 2018, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[44]  R. Gonzalez,et al.  Supplementation of specific carbohydrates results in enhanced deposition of chondrogenic‐specific matrix during mesenchymal stem cell differentiation , 2018, Journal of tissue engineering and regenerative medicine.

[45]  Yuan Yuan,et al.  Localization and promotion of recombinant human bone morphogenetic protein-2 bioactivity on extracellular matrix mimetic chondroitin sulfate-functionalized calcium phosphate cement scaffolds. , 2018, Acta biomaterialia.

[46]  S. Olson,et al.  Cooperative Interactions of Three Hotspot Heparin Binding Residues Are Critical for Allosteric Activation of Antithrombin by Heparin. , 2018, Biochemistry.

[47]  Chunming Wang,et al.  Bioactive polysaccharides from natural resources including Chinese medicinal herbs on tissue repair , 2018, Chinese Medicine.

[48]  C. Werner,et al.  Peptide‐functionalized starPEG/heparin hydrogels direct mitogenicity, cell morphology and cartilage matrix distribution in vitro and in vivo , 2018, Journal of tissue engineering and regenerative medicine.

[49]  T. Groth,et al.  Medical application of glycosaminoglycans: a review , 2018, Journal of tissue engineering and regenerative medicine.

[50]  S. Gronthos,et al.  Pentosan polysulfate binds to STRO-1+ mesenchymal progenitor cells, is internalized, and modifies gene expression: a novel approach of pre-programing stem cells for therapeutic application requiring their chondrogenesis , 2017, Stem Cell Research & Therapy.

[51]  O. Akkus,et al.  Effects of PDGF-BB delivery from heparinized collagen sutures on the healing of lacerated chicken flexor tendon in vivo. , 2017, Acta biomaterialia.

[52]  T. Arinzeh,et al.  * Gelatin Scaffolds Containing Partially Sulfated Cellulose Promote Mesenchymal Stem Cell Chondrogenesis. , 2017, Tissue engineering. Part A.

[53]  Xuetao Shi,et al.  Biomimetic mineralized hierarchical hybrid scaffolds based on in situ synthesis of nano-hydroxyapatite/chitosan/chondroitin sulfate/hyaluronic acid for bone tissue engineering. , 2017, Colloids and surfaces. B, Biointerfaces.

[54]  C. Harrison,et al.  Targeting TGF-β Mediated SMAD Signaling for the Prevention of Fibrosis , 2017, Front. Pharmacol..

[55]  Michael Nerlich,et al.  Tendon injuries , 2017, EFORT open reviews.

[56]  Nathaniel S. Hwang,et al.  Chondroitin Sulfate-Based Biomineralizing Surface Hydrogels for Bone Tissue Engineering. , 2017, ACS applied materials & interfaces.

[57]  Bethanie I. Ayerst,et al.  The Good the Bad and the Ugly of Glycosaminoglycans in Tissue Engineering Applications , 2017, Pharmaceuticals.

[58]  V. Geoffroy,et al.  Osteoblastic heparan sulfate glycosaminoglycans control bone remodeling by regulating Wnt signaling and the crosstalk between bone surface and marrow cells , 2017, Cell Death and Disease.

[59]  R. Reis,et al.  Chondroitin sulfate immobilization at the surface of electrospun nanofiber meshes for cartilage tissue regeneration approaches , 2017 .

[60]  Liming Bian,et al.  Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy. , 2017, Acta biomaterialia.

[61]  Yanhang Zhang,et al.  Glycosaminoglycans contribute to extracellular matrix fiber recruitment and arterial wall mechanics , 2017, Biomechanics and modeling in mechanobiology.

[62]  Nathaniel S. Hwang,et al.  Gelatin-based extracellular matrix cryogels for cartilage tissue engineering , 2017 .

[63]  R. Linhardt,et al.  Heparan Sulfate Domains Required for Fibroblast Growth Factor 1 and 2 Signaling through Fibroblast Growth Factor Receptor 1c* , 2016, The Journal of Biological Chemistry.

[64]  J. Melrose Glycosaminoglycans in Wound Healing , 2016 .

[65]  M. Guler,et al.  Sciatic nerve regeneration induced by glycosaminoglycan and laminin mimetic peptide nanofiber gels , 2016 .

[66]  M. Weiner,et al.  Effects of carrageenan on cell permeability, cytotoxicity, and cytokine gene expression in human intestinal and hepatic cell lines. , 2016, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[67]  O. Akkus,et al.  Heparinized collagen sutures for sustained delivery of PDGF-BB: Delivery profile and effects on tendon-derived cells In-Vitro. , 2016, Acta biomaterialia.

[68]  M. Murali,et al.  Three dimensional alginate-fucoidan composite hydrogel augments the chondrogenic differentiation of mesenchymal stromal cells. , 2016, Carbohydrate polymers.

[69]  A. Gobbi,et al.  One-Stage Cartilage Repair Using a Hyaluronic Acid–Based Scaffold With Activated Bone Marrow–Derived Mesenchymal Stem Cells Compared With Microfracture , 2016, The American journal of sports medicine.

[70]  Xiongbiao Chen,et al.  Effect of Nanoparticle Incorporation and Surface Coating on Mechanical Properties of Bone Scaffolds: A Brief Review , 2016, Journal of functional biomaterials.

[71]  T. Brenner,et al.  A study on phase separation behavior in kappa/iota carrageenan mixtures by micro DSC, rheological measurements and simulating water and cations migration between phases , 2016 .

[72]  B. Olsen,et al.  Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. , 2016, The Journal of clinical investigation.

[73]  Celeste Scotti,et al.  One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years , 2016, Knee Surgery, Sports Traumatology, Arthroscopy.

[74]  Ashley C. Brown,et al.  Chondroitin Sulfate Glycosaminoglycan Hydrogels Create Endogenous Niches for Neural Stem Cells. , 2015, Bioconjugate chemistry.

[75]  M. Bissell,et al.  Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells , 2015, Front. Cell Dev. Biol..

[76]  Changyong Wang,et al.  Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro. , 2015, Journal of biomedical materials research. Part B, Applied biomaterials.

[77]  R. Markwald,et al.  Roles of Proteoglycans and Glycosaminoglycans in Wound Healing and Fibrosis , 2015, International journal of cell biology.

[78]  K. Prydz Determinants of Glycosaminoglycan (GAG) Structure , 2015, Biomolecules.

[79]  J. Buhrman,et al.  High and low molecular weight hyaluronic acid differentially influence macrophage activation. , 2015, ACS biomaterials science & engineering.

[80]  Gavin Jell,et al.  Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. , 2015, Biomaterials.

[81]  D. Zeugolis,et al.  Glycosaminoglycans in Tendon Physiology, Pathophysiology, and Therapy. , 2015, Bioconjugate chemistry.

[82]  Chen Li,et al.  BMP-2 encapsulated polysaccharide nanoparticle modified biphasic calcium phosphate scaffolds for bone tissue regeneration. , 2015, Journal of biomedical materials research. Part A.

[83]  N. Nakamura,et al.  Matrix-Induced Autologous Chondrocyte Implantation versus Multipotent Stem Cells for the Treatment of Large Patellofemoral Chondral Lesions , 2015, Cartilage.

[84]  Beom-Su Kim,et al.  Fucoidan promotes osteoblast differentiation via JNK- and ERK-dependent BMP2–Smad 1/5/8 signaling in human mesenchymal stem cells , 2015, Experimental & Molecular Medicine.

[85]  N. Iwasaki,et al.  Sulfation patterns of exogenous chondroitin sulfate affect chondrogenic differentiation of ATDC5 cells , 2014, Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association.

[86]  L. Bertassoni,et al.  The contribution of proteoglycans to the mechanical behavior of mineralized tissues. , 2014, Journal of the mechanical behavior of biomedical materials.

[87]  Justin R. Siebert,et al.  Chondroitin Sulfate Proteoglycans in the Nervous System: Inhibitors to Repair , 2014, BioMed research international.

[88]  Robert Stern,et al.  Hyaluronan in wound healing: Rediscovering a major player , 2014, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[89]  M. Anselmi,et al.  Sulfated glycosaminoglycans exploit the conformational plasticity of bone morphogenetic protein-2 (BMP-2) and alter the interaction profile with its receptor. , 2014, Biomacromolecules.

[90]  D. Scharnweber,et al.  Chondroitin sulfate and sulfated hyaluronan-containing collagen coatings of titanium implants influence peri-implant bone formation in a minipig model. , 2014, Journal of biomedical materials research. Part A.

[91]  Bethanie I. Ayerst,et al.  New strategies for cartilage regeneration exploiting selected glycosaminoglycans to enhance cell fate determination. , 2014, Biochemical Society transactions.

[92]  L. Hofbauer,et al.  Artificial Extracellular Matrices with Oversulfated Glycosaminoglycan Derivatives Promote the Differentiation of Osteoblast-Precursor Cells and Premature Osteoblasts , 2014, BioMed research international.

[93]  Pawan Kumar Gupta,et al.  Glycosaminoglycans enhance osteoblast differentiation of bone marrow derived human mesenchymal stem cells , 2014, Journal of tissue engineering and regenerative medicine.

[94]  Yong-Dae Kwon,et al.  Photo-cured hyaluronic acid-based hydrogels containing growth and differentiation factor 5 (GDF-5) for bone tissue regeneration. , 2014, Bone.

[95]  M. Zenobi‐Wong,et al.  Chondrocyte culture in three dimensional alginate sulfate hydrogels promotes proliferation while maintaining expression of chondrogenic markers. , 2014, Tissue engineering. Part A.

[96]  B. Harley,et al.  The use of bioinspired alterations in the glycosaminoglycan content of collagen-GAG scaffolds to regulate cell activity. , 2013, Biomaterials.

[97]  J. Temenoff,et al.  The effect of desulfation of chondroitin sulfate on interactions with positively charged growth factors and upregulation of cartilaginous markers in encapsulated MSCs. , 2013, Biomaterials.

[98]  H. Screen,et al.  GAG depletion increases the stress-relaxation response of tendon fascicles, but does not influence recovery , 2013, Acta biomaterialia.

[99]  Gwo‐Jaw Wang,et al.  Hyaluronan initiates chondrogenesis mainly via CD44 in human adipose-derived stem cells. , 2013, Journal of applied physiology.

[100]  D. Shukla,et al.  Role of heparan sulfate in ocular diseases. , 2013, Experimental eye research.

[101]  P. Kongtawelert,et al.  A sulfated glycosaminoglycan array for molecular interactions between glycosaminoglycans and growth factors or anti-glycosaminoglycan antibodies. , 2013, Analytical biochemistry.

[102]  A. Oldberg,et al.  Biological functions of iduronic acid in chondroitin/dermatan sulfate , 2013, The FEBS journal.

[103]  S. Giannini,et al.  One-step arthroscopic technique for the treatment of osteochondral lesions of the knee with bone-marrow-derived cells: three years results , 2013, MUSCULOSKELETAL SURGERY.

[104]  D. Scharnweber,et al.  Sulfated hyaluronan/collagen I matrices enhance the osteogenic differentiation of human mesenchymal stromal cells in vitro even in the absence of dexamethasone. , 2012, Acta biomaterialia.

[105]  T. Rachner,et al.  The effect of the degree of sulfation of glycosaminoglycans on osteoclast function and signaling pathways. , 2012, Biomaterials.

[106]  Young Ha Kim,et al.  Composite system of PLCL scaffold and heparin-based hydrogel for regeneration of partial-thickness cartilage defects. , 2012, Biomacromolecules.

[107]  Xiaojun Duan,et al.  Sodium hyaluronate as a drug-release system for VEGF 165 improves graft revascularization in anterior cruciate ligament reconstruction in a rabbit model , 2012, Experimental and therapeutic medicine.

[108]  F. Greco,et al.  Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: a review. , 2012, Carbohydrate polymers.

[109]  Marc D. Isaacs,et al.  Chondroitin sulphate and heparan sulphate sulphation motifs and their proteoglycans are involved in articular cartilage formation during human foetal knee joint development , 2012, Histochemistry and Cell Biology.

[110]  H. Kitagawa,et al.  Chondroitin sulfate-E fine-tunes osteoblast differentiation via ERK1/2, Smad3 and Smad1/5/8 signaling by binding to N-cadherin and cadherin-11. , 2012, Biochemical and biophysical research communications.

[111]  S. McArthur,et al.  Glycosaminoglycan (GAG) binding surfaces for characterizing GAG-protein interactions. , 2012, Biomaterials.

[112]  Robert J Linhardt,et al.  Binding affinities of vascular endothelial growth factor (VEGF) for heparin-derived oligosaccharides. , 2012, Bioscience reports.

[113]  H. Langberg,et al.  Local administration of insulin‐like growth factor‐I (IGF‐I) stimulates tendon collagen synthesis in humans , 2012, Scandinavian journal of medicine & science in sports.

[114]  Jason A Burdick,et al.  Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. , 2011, Biomaterials.

[115]  B. Harley,et al.  The development of collagen-GAG scaffold-membrane composites for tendon tissue engineering. , 2011, Biomaterials.

[116]  M. Kjaer,et al.  Tensile Force Transmission in Human Patellar Tendon Fascicles Is Not Mediated by Glycosaminoglycans , 2011, Connective tissue research.

[117]  K. Athanasiou,et al.  Regional variation in the mechanical role of knee meniscus glycosaminoglycans. , 2011, Journal of applied physiology.

[118]  N. Scuderi,et al.  Wound Bed Preparation With a Dermal Substitute (Hyalomatrix® PA) Facilitates Re-epithelialization and Healing: Results of a Multicenter, Prospective, Observational Study on Complex Chronic Ulcers (The FAST Study). , 2011, Wounds : a compendium of clinical research and practice.

[119]  A. Oryan,et al.  Effects of sodium-hyaluronate and glucosamine-chondroitin sulfate on remodeling stage of tenotomized superficial digital flexor tendon in rabbits: a clinical, histopathological, ultrastructural, and biomechanical study , 2011, Connective tissue research.

[120]  J. Esko,et al.  Heparan sulfate proteoglycans. , 2011, Cold Spring Harbor perspectives in biology.

[121]  R. Haag,et al.  Synthesis and Evaluation of Nonsulfated and Sulfated Glycopolymers as L- and P-selectin Inhibitors , 2011 .

[122]  A. Colombatti,et al.  Blood‐derived human osteoclast resorption activity is impaired by Hyaluronan‐CD44 engagement via a p38‐dependent mechanism , 2011, Journal of cellular physiology.

[123]  Yongnian Yan,et al.  TGF-β3 immobilized PLGA-gelatin/chondroitin sulfate/hyaluronic acid hybrid scaffold for cartilage regeneration. , 2010, Journal of biomedical materials research. Part A.

[124]  A. Trouvin,et al.  Receptor activator of nuclear factor-κB ligand and osteoprotegerin: maintaining the balance to prevent bone loss , 2010, Clinical interventions in aging.

[125]  Heath B. Henninger,et al.  Effect of sulfated glycosaminoglycan digestion on the transverse permeability of medial collateral ligament. , 2010, Journal of biomechanics.

[126]  P. Nilsson,et al.  Contribution of Chondroitin Sulfate A to the Binding of Complement Proteins to Activated Platelets , 2010, PloS one.

[127]  T. Anada,et al.  Effect of chondroitin sulfate-E on the osteoclastic differentiation of RAW264 cells. , 2010, Dental materials journal.

[128]  M. Padrines,et al.  Proteoglycans on bone tumor development. , 2010, Drug discovery today.

[129]  P. du Souich,et al.  Modulation of inflammation by chondroitin sulfate. , 2010, Osteoarthritis and cartilage.

[130]  Hong Lu,et al.  Chemically Oversulfated Glycosaminoglycans Are Potent Modulators of Contact System Activation and Different Cell Signaling Pathways* , 2010, The Journal of Biological Chemistry.

[131]  F. Gao,et al.  Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis. , 2010, Matrix biology : journal of the International Society for Matrix Biology.

[132]  Young Ha Kim,et al.  In vitro chondrocyte culture in a heparin-based hydrogel for cartilage regeneration. , 2010, Tissue engineering. Part C, Methods.

[133]  D. Kaplan,et al.  In vitro model of mesenchymal condensation during chondrogenic development. , 2009, Biomaterials.

[134]  F. O'Brien,et al.  Osteoblast activity on collagen-GAG scaffolds is affected by collagen and GAG concentrations. , 2009, Journal of biomedical materials research. Part A.

[135]  B. Uygun,et al.  Effects of immobilized glycosaminoglycans on the proliferation and differentiation of mesenchymal stem cells. , 2009, Tissue engineering. Part A.

[136]  A. Theocharis,et al.  A comparative biochemical analysis of glycosaminoglycans and proteoglycans in human orthotopic and heterotopic bone , 2009, IUBMB life.

[137]  I. Chu,et al.  Type II collagen-chondroitin sulfate-hyaluronan scaffold cross-linked by genipin for cartilage tissue engineering. , 2009, Journal of bioscience and bioengineering.

[138]  Clayton J. Underwood,et al.  Contribution of glycosaminoglycans to viscoelastic tensile behavior of human ligament. , 2009, Journal of applied physiology.

[139]  K. Eichhorn,et al.  Sulfated glyco-block copolymers with specific receptor and growth factor binding to support cell adhesion and proliferation. , 2009, Biomaterials.

[140]  H. Zwipp,et al.  In vivo effects of modification of hydroxyapatite/collagen composites with and without chondroitin sulphate on bone remodeling in the sheep tibia , 2009, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[141]  T. Anada,et al.  Oversulfated chondroitin sulfate‐E binds to BMP‐4 and enhances osteoblast differentiation , 2008, Journal of cellular physiology.

[142]  Yu-Chen Hu,et al.  Co‐conjugating chondroitin‐6‐sulfate/dermatan sulfate to chitosan scaffold alters chondrocyte gene expression and signaling profiles , 2008, Biotechnology and bioengineering.

[143]  P. Prendergast,et al.  Gene expression by marrow stromal cells in a porous collagen–glycosaminoglycan scaffold is affected by pore size and mechanical stimulation , 2008, Journal of materials science. Materials in medicine.

[144]  H. Zwipp,et al.  Effect of chondroitin sulphate on material properties and bone remodelling around hydroxyapatite/collagen composites. , 2008, Journal of biomedical materials research. Part A.

[145]  P. Tan,et al.  Increased expression of non-sulfated chondroitin correlates with adverse clinicopathological parameters in prostate cancer , 2008, Modern Pathology.

[146]  J Fisher,et al.  The effect of glycosaminoglycan depletion on the friction and deformation of articular cartilage , 2008, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[147]  M. Tammi,et al.  Hyaluronan-dependent pericellular matrix. , 2007, Advanced drug delivery reviews.

[148]  C. Soranzo,et al.  Hyalomatrix: a temporary epidermal barrier, hyaluronan delivery, and neodermis induction system for keratinocyte stem cell therapy. , 2007, Tissue engineering.

[149]  J. Hui,et al.  Cartilaginous ECM component-modification of the micro-bead culture system for chondrogenic differentiation of mesenchymal stem cells. , 2007, Biomaterials.

[150]  H. Zwipp,et al.  In vivo effects of coating loaded and unloaded Ti implants with collagen, chondroitin sulfate, and hydroxyapatite in the sheep tibia , 2007, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[151]  Heath B. Henninger,et al.  Effect of dermatan sulfate glycosaminoglycans on the quasi‐static material properties of the human medial collateral ligament , 2007, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[152]  Changyou Gao,et al.  Gelatin/chitosan/hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering , 2007, Journal of materials science. Materials in medicine.

[153]  B. Toole,et al.  Hyaluronan in limb morphogenesis. , 2007, Developmental biology.

[154]  Claudio De Luca,et al.  Hyalograft® C: Hyaluronan-Based Scaffolds in Tissue-Engineered Cartilage , 2007, Cells Tissues Organs.

[155]  A Minami,et al.  Chitosan-based hyaluronan hybrid polymer fibre scaffold for ligament and tendon tissue engineering , 2007, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[156]  Shyni Varghese,et al.  Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. , 2007, Nature materials.

[157]  Yu-Chen Hu,et al.  Composite chondroitin-6-sulfate/dermatan sulfate/chitosan scaffolds for cartilage tissue engineering. , 2007, Biomaterials.

[158]  Heath B. Henninger,et al.  Spatial distribution and orientation of dermatan sulfate in human medial collateral ligament. , 2007, Journal of structural biology.

[159]  D. Fisher,et al.  Hyaluronan inhibits osteoclast differentiation via Toll-like receptor 4 , 2006, Journal of Cell Science.

[160]  Frédéric Blanchard,et al.  Characterization of osteoprotegerin binding to glycosaminoglycans by surface plasmon resonance: Role in the interactions with receptor activator of nuclear factor κB ligand (RANKL) and RANK , 2006 .

[161]  Samuel I Stupp,et al.  Heparin binding nanostructures to promote growth of blood vessels. , 2006, Nano letters.

[162]  K. Shimizu,et al.  Identification and Characterization of Versican/PG-M Aggregates in Cartilage* , 2006, Journal of Biological Chemistry.

[163]  H. Im,et al.  Hyaluronan Oligosaccharides Induce Matrix Metalloproteinase 13 via Transcriptional Activation of NFκB and p38 MAP Kinase in Articular Chondrocytes* , 2006, Journal of Biological Chemistry.

[164]  C. Ide,et al.  Effects of vibration and hyaluronic acid on activation of three-dimensional cultured chondrocytes. , 2006, Arthritis and rheumatism.

[165]  A. Wilson,et al.  Current concepts in the management of tendon disorders. , 2006, Rheumatology.

[166]  K. Nakanishi,et al.  Identification and Functions of Chondroitin Sulfate in the Milieu of Neural Stem Cells* , 2006, Journal of Biological Chemistry.

[167]  Gerard A Ateshian,et al.  Direct measurement of osmotic pressure of glycosaminoglycan solutions by membrane osmometry at room temperature. , 2005, Biophysical journal.

[168]  L. Lau,et al.  The heparin-binding site of antithrombin is crucial for antiangiogenic activity. , 2005, Blood.

[169]  K. Anseth,et al.  Heparin functionalized PEG gels that modulate protein adsorption for hMSC adhesion and differentiation. , 2005, Acta biomaterialia.

[170]  Maurilio Marcacci,et al.  Articular Cartilage Engineering with Hyalograft® C: 3-Year Clinical Results , 2005, Clinical orthopaedics and related research.

[171]  D. Papy-Garcia,et al.  Nondegradative Sulfation of Polysaccharides. Synthesis and Structure Characterization of Biologically Active Heparan Sulfate Mimetics , 2005 .

[172]  Mone Zaidi,et al.  Osteoclast signalling pathways. , 2005, Biochemical and biophysical research communications.

[173]  T. Satoh,et al.  The research on physiological property of functionalized hyaluronan: interaction between sulfated hyaluronan and plasma proteins , 2004 .

[174]  S. Olson,et al.  Accelerating ability of synthetic oligosaccharides on antithrombin inhibition of proteinases of the clotting and fibrinolytic systems Comparison with heparin and low-molecular-weight heparin , 2004, Thrombosis and Haemostasis.

[175]  R. Hollingsworth,et al.  CD44 modulates Smad1 activation in the BMP-7 signaling pathway , 2004, The Journal of cell biology.

[176]  P. R. van Weeren,et al.  An integral biochemical analysis of the main constituents of articular cartilage, subchondral and trabecular bone. , 2004, Osteoarthritis and cartilage.

[177]  R. Linhardt,et al.  Role of glycosaminoglycans in cellular communication. , 2004, Accounts of chemical research.

[178]  C. W. Prince,et al.  Roles of hyaluronan in bone resorption , 2004, BMC musculoskeletal disorders.

[179]  D. Carson,et al.  Heparan sulfate proteoglycans: coordinators of multiple signaling pathways during chondrogenesis. , 2004, Birth defects research. Part C, Embryo today : reviews.

[180]  J E Scott,et al.  Elasticity in extracellular matrix ‘shape modules’ of tendon, cartilage, etc. A sliding proteoglycan‐filament model , 2003, The Journal of physiology.

[181]  L. Uccioli A Clinical Investigation on the Characteristics and Outcomes of Treating Chronic Lower Extremity Wounds using the TissueTech Autograft System , 2003, The international journal of lower extremity wounds.

[182]  David L. Lacey,et al.  Osteoclast differentiation and activation , 2003, Nature.

[183]  C. Knudson Hyaluronan and CD44: strategic players for cell-matrix interactions during chondrogenesis and matrix assembly. , 2003, Birth defects research. Part C, Embryo today : reviews.

[184]  D. Ron,et al.  Dermatan Sulfate Binds and Potentiates Activity of Keratinocyte Growth Factor (FGF-7)* , 2002, The Journal of Biological Chemistry.

[185]  L. Bourguignon,et al.  Hyaluronan Promotes Signaling Interaction between CD44 and the Transforming Growth Factor β Receptor I in Metastatic Breast Tumor Cells* , 2002, The Journal of Biological Chemistry.

[186]  J. Trowbridge,et al.  Dermatan sulfate: new functions from an old glycosaminoglycan. , 2002, Glycobiology.

[187]  Brian H Annex,et al.  A target‐mediated model to describe the pharmacokinetics and hemodynamic effects of recombinant human vascular endothelial growth factor in humans , 2002, Clinical pharmacology and therapeutics.

[188]  S. Khosla,et al.  Minireview: the OPG/RANKL/RANK system. , 2001, Endocrinology.

[189]  M. Spector,et al.  The migration of cells from the ruptured human anterior cruciate ligament into collagen-glycosaminoglycan regeneration templates in vitro. , 2001, Biomaterials.

[190]  N. Sergeant,et al.  Proteoglycans: Pericellular and Cell Surface Multireceptors that Integrate External Stimuli in the Mammary Gland , 2001, Journal of Mammary Gland Biology and Neoplasia.

[191]  L. Bourguignon,et al.  CD44 Interaction with c-Src Kinase Promotes Cortactin-mediated Cytoskeleton Function and Hyaluronic Acid-dependent Ovarian Tumor Cell Migration* , 2001, The Journal of Biological Chemistry.

[192]  J. Funderburgh MINI REVIEW Keratan sulfate: structure, biosynthesis, and function , 2000 .

[193]  Y. M. Lee,et al.  Controlled release of platelet-derived growth factor-BB from chondroitin sulfate-chitosan sponge for guided bone regeneration. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[194]  T. Krieg,et al.  Expression and proteolysis of vascular endothelial growth factor is increased in chronic wounds. , 2000, The Journal of investigative dermatology.

[195]  Freddie H. Fu,et al.  GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis. , 2000, Journal of biomedical materials research.

[196]  A. Faissner,et al.  Chondroitin sulfate E promotes neurite outgrowth of rat embryonic day 18 hippocampal neurons , 1999, Neuroscience Letters.

[197]  Linshu Liu,et al.  An osteoconductive collagen/hyaluronate matrix for bone regeneration. , 1999, Biomaterials.

[198]  N. Adachi,et al.  Hyaluronic acid enhances proliferation and chondroitin sulfate synthesis in cultured chondrocytes embedded in collagen gels , 1999, Journal of cellular physiology.

[199]  G. Abatangelo,et al.  Functions of hyaluronan in wound repair , 1999, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[200]  U. Bosch,et al.  Alterations of Glycosaminoglycans During Patellar Tendon Autograft Healing After Posterior Cruciate Ligament Replacement , 1998, The American journal of sports medicine.

[201]  K. Harding,et al.  Hyaluronic acid induces tumour necrosis factor-α production by human macrophages in vitro , 1997 .

[202]  J. Uitto,et al.  Chronic sun exposure alters both the content and distribution of dermal glycosaminoglycans , 1996, The British journal of dermatology.

[203]  J. Scott Proteodermatan and proteokeratan sulfate (decorin, lumican/fibromodulin) proteins are horseshoe shaped. Implications for their interactions with collagen. , 1996, Biochemistry.

[204]  E. Turley,et al.  HA receptors: Regulators of signalling to the cytoskeleton , 1996, Journal of cellular biochemistry.

[205]  M D Chard,et al.  Glycosaminoglycans of human rotator cuff tendons: changes with age and in chronic rotator cuff tendinitis. , 1994, Annals of the rheumatic diseases.

[206]  A. Lander,et al.  Differential binding of chemokines to glycosaminoglycan subpopulations , 1994, Current Biology.

[207]  S. Olson,et al.  Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement. , 1992, The Journal of biological chemistry.

[208]  T. Hardingham,et al.  Proteoglycans: many forms and many functions , 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[209]  H. Ishikawa,et al.  Disaccharide analysis of the skin glycosaminoglycans in systemic sclerosis , 1992, The British journal of dermatology.

[210]  J. Scott,et al.  Proteoglycan: collagen interactions and corneal ultrastructure. , 1991, Biochemical Society transactions.

[211]  E. Razin,et al.  Synthesis of chondroitin sulfate D and heparin proteoglycans in murine lymph node-derived mast cells. The dependence on fibroblasts. , 1990, The Journal of biological chemistry.

[212]  S. Boyce,et al.  Burn wound closure with cultured autologous keratinocytes and fibroblasts attached to a collagen-glycosaminoglycan substrate. , 1989, JAMA.

[213]  P. Mourão,et al.  Distribution of chondroitin 4-sulfate and chondroitin 6-sulfate in human articular and growth cartilage. , 1988, Arthritis and rheumatism.

[214]  H. Muir,et al.  The structure and function of cartilage proteoglycans. , 1988, Physiological reviews.

[215]  J. Scott Proteoglycan-fibrillar collagen interactions. , 1988, The Biochemical journal.

[216]  B. Olsen,et al.  Structure of the glycosaminoglycan domain in the type IX collagen-proteoglycan. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[217]  B. Humbel,et al.  On the role of type IX collagen in the extracellular matrix of cartilage: type IX collagen is localized to intersections of collagen fibrils , 1986, The Journal of cell biology.

[218]  A I Caplan,et al.  Hyaluronic acid bonded to cell-culture surfaces stimulates chondrogenesis in stage 24 limb mesenchyme cell cultures. , 1986, Developmental biology.

[219]  C. W. Prince,et al.  Glycosaminoglycan alterations in rat bone due to growth and fluorosis. , 1983, The Journal of nutrition.

[220]  J. Scott,et al.  Proteoglycan-collagen arrangements in developing rat tail tendon. An electron microscopical and biochemical investigation. , 1981, The Biochemical journal.

[221]  S. Lamberg,et al.  Glycosaminoglycans. A biochemical and clinical review. , 1974, The Journal of investigative dermatology.

[222]  B. Toole,et al.  Hyaluronate in morphogenesis: inhibition of chondrogenesis in vitro. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[223]  F. G. Donnan,et al.  The Theory of Membrane Equilibria. , 1924 .

[224]  H. Nakato,et al.  Functions of Heparan Sulfate Proteoglycans in Development: Insights From Drosophila Models. , 2016, International review of cell and molecular biology.

[225]  P. Gatenholm,et al.  Alginate Sulfate–Nanocellulose Bioinks for Cartilage Bioprinting Applications , 2016, Annals of Biomedical Engineering.

[226]  Dietmar W. Hutmacher,et al.  A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. , 2014, Acta biomaterialia.

[227]  W. Vainchenker,et al.  Fucoidan promotes early step of cardiac differentiation from human embryonic stem cells and long term maintenance of beating areas , 2017 .

[228]  D. Scharnweber,et al.  Coating with artificial matrices from collagen and sulfated hyaluronan influences the osseointegration of dental implants , 2013, Journal of Materials Science: Materials in Medicine.

[229]  Z. Shriver,et al.  Heparin and heparan sulfate: analyzing structure and microheterogeneity. , 2012, Handbook of experimental pharmacology.

[230]  R. Vago,et al.  Hyaluronan and mesenchymal stem cells: from germ layer to cartilage and bone. , 2011, Frontiers in bioscience.

[231]  Fergal J O'Brien,et al.  The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. , 2010, Biomaterials.

[232]  Robert M Lauder,et al.  Chondroitin sulphate: a complex molecule with potential impacts on a wide range of biological systems. , 2009, Complementary therapies in medicine.

[233]  Shyni Varghese,et al.  Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. , 2008, Matrix biology : journal of the International Society for Matrix Biology.

[234]  K. Anseth,et al.  The effect of heparin-functionalized PEG hydrogels on three-dimensional human mesenchymal stem cell osteogenic differentiation. , 2007, Biomaterials.

[235]  Mary C Farach-Carson,et al.  Heparan sulfate proteoglycans: key players in cartilage biology. , 2005, Critical reviews in eukaryotic gene expression.

[236]  William L Hickerson,et al.  Multicenter postapproval clinical trial of Integra dermal regeneration template for burn treatment. , 2003, The Journal of burn care & rehabilitation.

[237]  J. Zaia,et al.  Structural analysis of cartilage proteoglycans and glycoproteins using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. , 2000, Analytical biochemistry.

[238]  R. Stevens Secretory granule proteoglycans of mast cells and natural killer cells. , 1986, Ciba Foundation symposium.

[239]  T. Wight Vessel proteoglycans and thrombogenesis. , 1980, Progress in hemostasis and thrombosis.