Utilização da técnica de birrefringência em reômetro multipasse para a diferenciação de grades de poliestireno cristal
暂无分享,去创建一个
Argimiro Resende Secchi | A. R. Secchi | Thais M. Farias | S. A. Butler | Nilo Sérgio Medeiros Cardozo | Thais Machado Farias
[1] M. Miles,et al. Conformational relaxation time in polymer solutions by elongational flow experiments: 1. Determination of extensional relaxation time and its molecular weight dependence , 1980 .
[2] F. Baaijens. Mixed finite element methods for viscoelastic flow analysis : a review , 1998 .
[3] F. Pinho,et al. Effect of a high-resolution differencing scheme on finite-volume predictions of viscoelastic flows , 2000 .
[4] J. Smeulders,et al. The multipass rheometer , 1995 .
[5] H. Giesekus. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility , 1982 .
[6] B. Vergnes,et al. Validity of the stress optical law and application of birefringence to polymer complex flows , 1996 .
[7] James W. Miller,et al. Oscillatory Flow Birefringence of Low Molecular Weight Polystyrene Solutions. High Frequency Behavior , 1975 .
[8] G. Fuller. Optical Rheometry of Complex Fluids , 1995 .
[9] M. Mackley,et al. The experimental observation and numerical prediction of planar entry flow and die swell for molten polyethylenes , 1995 .
[10] Argimiro Resende Secchi,et al. Viscoelastic flow analysis using the software OpenFOAM and differential constitutive equations , 2010 .
[11] M. Walkley,et al. The matching of 3D Rolie-Poly viscoelastic numerical simulations with experimental polymer melt flow within a slit and a cross-slot geometry , 2010 .
[12] R. Armstrong,et al. Birefringence and laser-Doppler velocimetry (LDV) studies of viscoelastic flow through a planar contraction , 1994 .
[13] R. Tanner,et al. Numerical Simulation of Non-Newtonian Flow , 1984 .
[14] Johannes M. Soulages,et al. Lubricated optical rheometer for the study of two-dimensional complex flows of polymer melts , 2008 .
[15] J. Oldroyd. On the formulation of rheological equations of state , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[16] L. G. Leal,et al. Flow birefringence of concentrated polymer solutions in two‐dimensional flows , 1981 .
[17] R. Tanner,et al. A new constitutive equation derived from network theory , 1977 .
[18] Hrvoje Jasak,et al. Viscoelastic fluid analysis in internal and in free surface flows using the software OpenFOAM , 2010, Comput. Chem. Eng..
[19] Roland Keunings,et al. A SURVEY OF COMPUTATIONAL RHEOLOGY , 2000 .
[20] Malcolm R. Mackley,et al. The application of the multi-pass rheometer for precise rheo-optic characterisation of polyethylene melts , 2001 .
[21] A. S. Lodge,et al. Variation of Flow Birefringence with Stress , 1955, Nature.
[22] E. Riande,et al. Dipole moments and birefringence of polymers , 1992 .
[23] D. Hassell,et al. The multipass rheometer a review , 2011 .
[24] R. Larson,et al. Molecular constitutive equations for a class of branched polymers: The pom-pom polymer , 1998 .
[25] Malcolm R. Mackley,et al. The melt processing of monodisperse and polydisperse polystyrene melts within a slit entry and exit flow , 2005 .
[26] J. Piau,et al. Rheology for polymer melt processing , 1996 .
[27] J. Egmond,et al. FULL TENSOR OPTICAL RHEOMETRY OF POLYMER FLUIDS , 1997 .