The Maxwell Compactness Property in Bounded Weak Lipschitz Domains with Mixed Boundary Conditions

For a bounded weak Lipschitz domain we show the so called `Maxwell compactness property', that is, the space of square integrable vector fields having square integrable weak rotation and divergence and satisfying mixed tangential and normal boundary conditions is compactly embedded into the space of square integrable vector fields. We will also prove some canonical applications, such as Maxwell estimates, Helmholtz decompositions and a static solution theory. Furthermore, a Fredholm alternative for the underlying time-harmonic Maxwell problem and all corresponding and related results for exterior domains formulated in weighted Sobolev spaces are straight forward.

[1]  G. Starke,et al.  Dev-Div- and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions , 2013, 1307.1434.

[2]  P. Werner,et al.  Regularity theorems for Maxwell's equations , 1981 .

[3]  K. Witsch,et al.  A remark on a compactness result in electromagnetic theory , 1993 .

[4]  Dirk Pauly,et al.  Complete low frequency asymptotics for time-harmonic generalized Maxwell equations in nonsmooth exterior domains , 2011, Asymptot. Anal..

[5]  Frank Jochmann,et al.  A compactness result for vector fields with divergence and curl in Lq(ω) involving mixed boundary conditions , 1997 .

[6]  Rainer Picard,et al.  Some decomposition theorems and their application to non-linear potential theory and Hodge theory , 1990 .

[7]  Rainer Picard,et al.  On the low frequency asymptotics in electromagnetic theory. , 1984 .

[8]  Rainer Picard,et al.  On the boundary value problems of electro- and magnetostatics , 1982, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[9]  N. Weck,et al.  Time-Harmonic Maxwell Equations in the Exterior of Perfectly Conducting, Irregular Obstacles , 2001 .

[10]  C. Hill,et al.  On the Principle of Limiting Absorption , 2011 .

[11]  N. Weck TRACES OF DIFFERENTIAL FORMS ON LIPSCHITZ BOUNDARIES , 2004 .

[12]  Dirk Pauly,et al.  On polynomial and exponential decay of eigen-solutions to exterior boundary value problems for the generalized time-harmonic Maxwell system , 2012, Asymptot. Anal..

[13]  R. Leis,et al.  Initial Boundary Value Problems in Mathematical Physics , 1986 .

[14]  C. Morawetz The limiting amplitude principle , 1962 .

[15]  R. Leis,et al.  Randwertaufgaben in der verallgemeinerten Potentialtheorie , 1981 .

[16]  D. Pauly,et al.  Regularity results for generalized electro-magnetic problems , 2010, 1105.4091.

[17]  M. Costabel A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains , 1990 .

[18]  P. Werner,et al.  A local compactness theorem for Maxwell's equations , 1980 .

[19]  D M Eidus,et al.  THE PRINCIPLE OF LIMIT AMPLITUDE , 1969 .

[20]  R. Picard An elementary proof for a compact imbedding result in generalized electromagnetic theory , 1984 .

[21]  D. Pauly Generalized electro-magneto statics in nonsmooth exterior domains , 2011, 1105.4070.

[22]  Hantaek Bae,et al.  On the Navier-Stokes equations , 2009 .

[23]  D. Pauly,et al.  On Korn's first inequality for tangential or normal boundary conditions with explicit constants , 2015, 1503.07419.

[24]  Hodge–Helmholtz decompositions of weighted Sobolev spaces in irregular exterior domains with inhomogeneous and anisotropic media , 2011, 1105.4073.

[25]  N. Weck,et al.  Maxwell's boundary value problem on Riemannian manifolds with nonsmooth boundaries , 1974 .

[26]  E. Kunz Traces of Differential Forms , 1986 .

[27]  T. Shirota,et al.  THE PRINCIPLE OF LIMITING AMPLITUDE , 1967 .