Online Analysis of Medical Time Series

Complex, often high-dimensional time series are observed in medical applications such as intensive care. We review statistical tools for intelligent alarm systems, which are helpful for guiding medical decision-making in time-critical situations. The procedures described can also be applied for decision support or in closed-loop controllers. Robust time series filters allow one to extract a signal in the form of a time-varying trend with little or no delay. Additional rules—based, for instance, on suitably designed statistical tests—can be incorporated to preserve or detect interesting patterns such as level shifts or trend changes. Statistical pattern detection is a useful preprocessing step for decision-support systems. Dimension reduction techniques allow the compression of the often high-dimensional time series into a few variables containing most of the information inherent in the observed data. Combining such techniques with tools for analyzing the relationships among the variables in the form of la...

[1]  Bernhard Spangl,et al.  Robust Kalman tracking and smoothing with propagating and non-propagating outliers , 2012, 1204.3358.

[2]  K. Gordon,et al.  Modeling and Monitoring Biomedical Time Series , 1990 .

[3]  Risto Wichman,et al.  FIR-median hybrid filters with excellent transient response in noisy conditions , 1990, IEEE Trans. Acoust. Speech Signal Process..

[4]  Ursula Gather,et al.  Pattern Detection in Intensive Care Monitoring Time Series with Autoregressive Models: Influence of the Model Order , 2002 .

[5]  Sylvie Charbonnier,et al.  Trends extraction and analysis for complex system monitoring and decision support , 2005, Eng. Appl. Artif. Intell..

[6]  Ping Yang,et al.  Adaptive Change Detection in Heart Rate Trend Monitoring in Anesthetized Children , 2006, IEEE Transactions on Biomedical Engineering.

[7]  Roland Fried,et al.  Online signal extraction by robust regression in moving windows with data-adaptive width selection , 2014, Stat. Comput..

[8]  Ingo Wegener,et al.  Modified repeated median filters , 2006, Stat. Comput..

[9]  Roland Fried,et al.  The crying wolf: still crying? , 2009, Anesthesia and analgesia.

[10]  Adrian F. M. Smith,et al.  Monitoring Kidney Transplant Patients , 1983 .

[11]  U. Gather,et al.  Intensive care unit alarms—How many do we need?* , 2010, Critical care medicine.

[12]  Junping Du,et al.  Robust unscented Kalman filter with adaptation of process and measurement noise covariances , 2016, Digit. Signal Process..

[13]  John W. Tukey,et al.  Efficient Utilization of Non-Numerical Information in Quantitative Analysis General Theory and the Case of Simple Order , 1963 .

[14]  Michael Imhoff,et al.  Reducing False Alarms of Intensive Care Online-Monitoring Systems: An Evaluation of Two Signal Extraction Algorithms , 2011, Comput. Math. Methods Medicine.

[15]  Roland Fried On the online estimation of local constant volatilities , 2012, Comput. Stat. Data Anal..

[16]  Ursula Gather,et al.  Robust online signal extraction from multivariate time series , 2010, Comput. Stat. Data Anal..

[17]  Ursula Gather,et al.  On rank tests for shift detection in time series , 2007, Comput. Stat. Data Anal..

[18]  Matthias Görges,et al.  Improving Alarm Performance in the Medical Intensive Care Unit Using Delays and Clinical Context , 2009, Anesthesia and analgesia.

[19]  Ursula Gather,et al.  Graphical models for multivariate time series from intensive care monitoring , 2002, Statistics in medicine.

[20]  Sylvie Charbonnier,et al.  On-line segmentation algorithm for continuously monitored data in intensive care units , 2004, IEEE Transactions on Biomedical Engineering.

[21]  Ursula Gather,et al.  Multivariate Real-Time Signal Extraction by a Robust Adaptive Regression Filter , 2009, Commun. Stat. Simul. Comput..

[22]  R. Dahlhaus Graphical interaction models for multivariate time series1 , 2000 .

[23]  Bell Telephone,et al.  ROBUST ESTIMATES, RESIDUALS, AND OUTLIER DETECTION WITH MULTIRESPONSE DATA , 1972 .

[24]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[25]  R R Kennedy,et al.  A modified Trigg's Tracking Variable as an ‘advisory’ alarm during anaesthesia , 1995, International journal of clinical monitoring and computing.

[26]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[27]  Ursula Gather,et al.  Methods and Algorithms for Robust Filtering , 2004 .

[28]  Roland Fried,et al.  Online signal extraction by robust linear regression , 2006, Comput. Stat..

[29]  Ursula Gather,et al.  Patterns of Dependencies in Dynamic Multivariate Data , 2002, Pattern Detection and Discovery.

[30]  Roland Fried,et al.  Robust online-surveillance of trend-coherence in multivariate data streams: the similar trend monitoring (STM) procedure , 2015, Stat. Comput..

[31]  Herold Dehling,et al.  Robust nonparametric tests for the two-sample location problem , 2011, Stat. Methods Appl..

[32]  Ursula Gather,et al.  Online classification of states in intensive care , 2000 .

[33]  Ursula Gather,et al.  Online analysis of time series by the Qn estimator , 2009, Comput. Stat. Data Anal..

[34]  George E. P. Box,et al.  Time Series Analysis: Box/Time Series Analysis , 2008 .

[35]  Martin Daumer,et al.  On-line change-point detection (for state space models) using multi-process Kalman filters , 1998 .

[36]  Ursula Gather,et al.  Weighted Repeated Median Smoothing and Filtering , 2007 .

[37]  Roland Fried,et al.  Robust filtering of time series with trends , 2004 .

[38]  Jaakko Astola,et al.  Linear median hybrid filters , 1989 .

[39]  Ira J. Haimowitz,et al.  Clinical monitoring using regression-based trend templates , 1995, Artif. Intell. Medicine.

[40]  M. Imhoff,et al.  Statistical pattern detection in univariate time series of intensive care on-line monitoring data , 1998, Intensive Care Medicine.

[41]  A. Siegel Robust regression using repeated medians , 1982 .

[42]  Roland Fried,et al.  On the robust detection of edges in time series filtering , 2007, Comput. Stat. Data Anal..

[43]  Yong Hoon Lee,et al.  Generalized median filtering and related nonlinear filtering techniques , 1985, IEEE Trans. Acoust. Speech Signal Process..

[44]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[45]  Bernhard Spangl,et al.  robKalman — a package on Robust Kalman Filtering , 2006 .

[46]  R. Fried,et al.  Control charts for the mean based on robust two-sample tests , 2017 .

[47]  Yrjö Neuvo,et al.  FIR-median hybrid filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[48]  A. Mäkivirta,et al.  The median filter as a preprocessor for a patient monitor limit alarm system in intensive care. , 1991, Computer methods and programs in biomedicine.

[49]  Ursula Gather,et al.  Robust signal extraction for on-line monitoring data , 2004 .

[50]  Daniel Peña,et al.  Generalized Dynamic Principal Components , 2016 .

[51]  U. Gather,et al.  Robust online scale estimation in time series: A model-free approach , 2009 .

[52]  P. Rousseeuw,et al.  Alternatives to the Median Absolute Deviation , 1993 .

[53]  Sylvie Charbonnier,et al.  On line extraction of temporal episodes from ICU high-frequency data: A visual support for signal interpretation , 2005, Comput. Methods Programs Biomed..

[54]  Sonja Kuhnt,et al.  On- and offline detection of structural breaks in thermal spraying processes , 2014 .

[55]  M. Görges,et al.  Medical device alarms , 2011, Biomedizinische Technik. Biomedical engineering.

[56]  Ursula Gather,et al.  Repeated median and hybrid filters , 2006, Comput. Stat. Data Anal..

[57]  Marco Lippi,et al.  The Generalized Dynamic Factor Model , 2002 .

[58]  J. L. Hodges,et al.  Estimates of Location Based on Rank Tests , 1963 .

[59]  Roland Fried,et al.  Computing the update of the repeated median regression line in linear time , 2003, Inf. Process. Lett..

[60]  George E. P. Box,et al.  Identifying a Simplifying Structure in Time Series , 1987 .

[61]  A. Smith,et al.  Detection of renal allograft rejection by computer. , 1983, British medical journal.

[62]  Yrjö Neuvo,et al.  FIR-median hybrid filters with predictive FIR substructures , 1988, IEEE Trans. Acoust. Speech Signal Process..

[63]  Katharina Morik,et al.  Development of Decision Support Algorithms for Intensive Care Medicine: A New Approach Combining Time Series Analysis and a Knowledge Base System with Learning and Revision Capabilities , 1999, KI.