A novel Bayesian approach for structural model updating utilizing statistical modal information from multiple setups
暂无分享,去创建一个
[1] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[2] Michael I. Friswell,et al. The adjustment of structural parameters using a minimum variance estimator , 1989 .
[3] John E. Mottershead,et al. Finite Element Model Updating in Structural Dynamics , 1995 .
[4] M. W. Vanik,et al. Bayesian Probabilistic Approach to Structural Health Monitoring , 1998 .
[5] J. Beck,et al. UPDATING MODELS AND THEIR UNCERTAINTIES. II: MODEL IDENTIFIABILITY. TECHNICAL NOTE , 1998 .
[6] J. Beck,et al. Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .
[7] Lambros S. Katafygiotis,et al. Bayesian spectral density approach for modal updating using ambient data , 2001 .
[8] David A. Nix,et al. Vibration–based structural damage identification , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[9] James L. Beck,et al. Monitoring Structural Health Using a Probabilistic Measure , 2001 .
[10] L. Katafygiotis,et al. Tangential‐projection algorithm for manifold representation in unidentifiable model updating problems , 2002 .
[11] Guido De Roeck,et al. STRUCTURAL DAMAGE IDENTIFICATION USING MODAL DATA. I: SIMULATION VERIFICATION , 2002 .
[12] Lambros S. Katafygiotis,et al. Bayesian Fast Fourier Transform Approach for Modal Updating Using Ambient Data , 2003 .
[13] Zhi Sun. Wavelet packet based structural health monitoring and damage assessment , 2003 .
[14] James L. Beck,et al. Two-Stage Structural Health Monitoring Approach for Phase I Benchmark Studies , 2004 .
[15] James L. Beck,et al. New Bayesian Model Updating Algorithm Applied to a Structural Health Monitoring Benchmark , 2004 .
[16] James L. Beck,et al. Structural Model Updating and Health Monitoring with Incomplete Modal Data Using Gibbs Sampler , 2006, Comput. Aided Civ. Infrastructure Eng..
[17] Lambros S. Katafygiotis,et al. Efficient model updating and health monitoring methodology using incomplete modal data without mode matching , 2006 .
[18] Christian Soize,et al. Robust Updating of Uncertain Computational Models Using Experimental Modal Analysis , 2008 .
[19] M. Friswell,et al. Perturbation methods for the estimation of parameter variability in stochastic model updating , 2008 .
[20] Michael Link,et al. Stochastic model updating—Covariance matrix adjustment from uncertain experimental modal data , 2010 .
[21] K. Yuen. Bayesian Methods for Structural Dynamics and Civil Engineering , 2010 .
[22] Siu-Kui Au,et al. Fast Bayesian FFT Method for Ambient Modal Identification with Separated Modes , 2011 .
[23] Pizhong Qiao,et al. Vibration-based Damage Identification Methods: A Review and Comparative Study , 2011 .
[24] J. Mottershead,et al. Interval model updating with irreducible uncertainty using the Kriging predictor , 2011 .
[25] Siu-Kui Au. Assembling mode shapes by least squares , 2011 .
[26] S. Au. Fast Bayesian ambient modal identification in the frequency domain, Part II: Posterior uncertainty , 2012 .
[27] Huajiang Ouyang,et al. Parameter selection and stochastic model updating using perturbation methods with parameter weighting matrix assignment , 2012 .
[28] Siu-Kui Au,et al. Connecting Bayesian and frequentist quantification of parameter uncertainty in system identification , 2012 .
[29] S. Au. Fast Bayesian ambient modal identification in the frequency domain, Part I: Posterior most probable value , 2012 .
[30] Siu-Kui Au,et al. Fast Bayesian Ambient Modal Identification Incorporating Multiple Setups , 2012 .
[31] Wang-Ji Yan,et al. Statistic structural damage detection based on the closed-form of element modal strain energy sensitivity , 2012 .
[32] Costas Papadimitriou,et al. Component mode synthesis techniques for finite element model updating , 2013 .
[33] Wang-Ji Yan,et al. A two-stage fast Bayesian spectral density approach for ambient modal analysis. Part II: Mode shape assembly and case studies , 2015 .
[34] L. Katafygiotis,et al. A two-stage fast Bayesian spectral density approach for ambient modal analysis. Part I: Posterior most probable value and uncertainty , 2015 .