Local and global regularized sparse coding for data representation

Recently, sparse coding has been widely adopted for data representation in real-world applications. In order to consider the geometric structure of data, we propose a novel method, local and global regularized sparse coding (LGSC), for data representation. LGSC not only models the global geometric structure by a global regression regularizer, but also takes into account the manifold structure using a local regression regularizer. Compared with traditional sparse coding methods, the proposed method can preserve both global and local geometric structures of the original high-dimensional data in a new representation space. Experimental results on benchmark datasets show that the proposed method can improve the performance of clustering.

[1]  Jiawei Han,et al.  Locally Consistent Concept Factorization for Document Clustering , 2011, IEEE Transactions on Knowledge and Data Engineering.

[2]  D. Donoho,et al.  Atomic Decomposition by Basis Pursuit , 2001 .

[3]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[4]  Honggang Zhang,et al.  Reference-Based Scheme Combined With K-SVD for Scene Image Categorization , 2013, IEEE Signal Processing Letters.

[5]  Zhifeng Li,et al.  Fishervioce: A discriminant subspace framework for speaker recognition , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[6]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[7]  Lei Zhang,et al.  Gabor Feature Based Sparse Representation for Face Recognition with Gabor Occlusion Dictionary , 2010, ECCV.

[8]  John Wright,et al.  RASL: Robust Alignment by Sparse and Low-Rank Decomposition for Linearly Correlated Images , 2012, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Chun Chen,et al.  Graph Regularized Sparse Coding for Image Representation , 2011, IEEE Transactions on Image Processing.

[10]  R. Fergus,et al.  Learning invariant features through topographic filter maps , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[12]  Liang-Tien Chia,et al.  Laplacian Sparse Coding, Hypergraph Laplacian Sparse Coding, and Applications , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[14]  Simon C. K. Shiu,et al.  Unsupervised feature selection by regularized self-representation , 2015, Pattern Recognit..

[15]  Bin Tang,et al.  Document Representation and Dimension Reduction for Text Clustering , 2007, 2007 IEEE 23rd International Conference on Data Engineering Workshop.

[16]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[17]  Yihong Gong,et al.  Locality-constrained Linear Coding for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Chunxia Zhao,et al.  Constrained Sparse Concept Coding Algorithm with Application to Image Representation , 2014, KSII Trans. Internet Inf. Syst..

[19]  Hujun Bao,et al.  Sparse concept coding for visual analysis , 2011, CVPR 2011.

[20]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[21]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Honggang Zhang,et al.  Codebook optimization using word activation forces for scene categorization , 2012, 2012 19th IEEE International Conference on Image Processing.

[23]  Léon Bottou,et al.  Local Learning Algorithms , 1992, Neural Computation.

[24]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[25]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[26]  Patrik O. Hoyer,et al.  Non-negative Matrix Factorization with Sparseness Constraints , 2004, J. Mach. Learn. Res..

[27]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[28]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[29]  Xiaojun Wu,et al.  Graph Regularized Nonnegative Matrix Factorization for Data Representation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Shengping Zhang,et al.  Sparse coding based visual tracking: Review and experimental comparison , 2013, Pattern Recognit..

[32]  Alejandro F. Frangi,et al.  Two-dimensional PCA: a new approach to appearance-based face representation and recognition , 2004 .

[33]  Wenhua Wang,et al.  Local and Global Regressive Mapping for Manifold Learning with Out-of-Sample Extrapolation , 2010, AAAI.

[34]  Thomas S. Huang,et al.  Image Super-Resolution Via Sparse Representation , 2010, IEEE Transactions on Image Processing.

[35]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[36]  Quanquan Gu,et al.  Local Learning Regularized Nonnegative Matrix Factorization , 2009, IJCAI.

[37]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[38]  Chunxia Zhao,et al.  Local regularization concept factorization and its semi-supervised extension for image representation , 2015, Neurocomputing.

[39]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.