Hypoxia in Human Prostate Carcinoma

The purpose of this study was to characterize the extent of hypoxia in human prostate carcinoma using the Eppendorf P O2 microelectrode. Custom-made Eppendorf P O2 microelectrodes were used to obtain P O2 measurements from the pathologically involved region of the prostate (as determined by the pretreatment sextant biopsies), as well as from a region of normal muscle for comparison. Fifty-nine patients with localized prostate cancer were studied, all of whom received brachytherapy implants under spinal anesthesia. A multivariate mixed effects analysis for prediction of tumor oxygenation was performed including the following covariates: type of tissue (prostate versus muscle), prostatic-specific antigen, disease stage, patient age and race, tumor grade, volume, perineural invasion, and hormonal therapy. Because of differences in patient characteristics, control measurements were obtained from normal muscle in all patients. This internal comparison showed that the oxygen measurements from the pathologically involved portion of the prostate were significantly lower (average median P O2 5 2.4 mm Hg) compared with the measurements from normal muscle (average median P O2 5 30.0 mm Hg),p , 0.0001. A multivariate, linear, mixed analysis demonstrated that the only significant predictor of oxygenation was the type of tissue (prostate versus muscle). This study, using in vivo electrode oxygen measurements, suggests that hypoxia exists in human prostate carcinoma. More patients will be accrued to this study to ultimately correlate the oxygenation status in prostate carcinoma tumors with treatment outcome.

[1]  B. Movsas,et al.  Marking Hypoxia in Rat Prostate Carcinomas with β-d-[125I]Azomycin Galactopyranoside and [99mTc]HL-91: Correlation with Microelectrode Measurements , 2001 .

[2]  D. Chaplin,et al.  Microenvironmental control of gene expression: implications for tumor angiogenesis, progression, and metastasis. , 1998, Seminars in radiation oncology.

[3]  A. Giaccia,et al.  Tumor hypoxia and the cell cycle: implications for malignant progression and response to therapy. , 1998, The cancer journal from Scientific American.

[4]  M. Dewhirst,et al.  Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. , 1997, International journal of radiation oncology, biology, physics.

[5]  J. Isaacs,et al.  Potentiation of the antiangiogenic ability of linomide by androgen ablation involves down-regulation of vascular endothelial growth factor in human androgen-responsive prostatic cancers. , 1997, Cancer research.

[6]  T K Lewellen,et al.  Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. , 1996, International journal of radiation oncology, biology, physics.

[7]  M. Parliament,et al.  Imaging tumor hypoxia and tumor perfusion. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[8]  R. Gatenby,et al.  Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. , 1988, International journal of radiation oncology, biology, physics.

[9]  G. Hanks,et al.  Single-photon emission computed tomography and positron-emission tomography assays for tissue oxygenation. , 2001, Seminars in radiation oncology.

[10]  A. Hanlon,et al.  Hypoxic regions exist in human prostate carcinoma. , 1999, Urology.

[11]  P Vaupel,et al.  Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. , 1993, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.