The Complexity of Compressed Membership Problems for Finite Automata

In this paper, a compressed membership problem for finite automata, both deterministic (DFAs) and non-deterministic (NFAs), with compressed transition labels is studied. The compression is represented by straight-line programs (SLPs), i.e. context-free grammars generating exactly one string. A novel technique of dealing with SLPs is employed: the SLPs are recompressed, so that substrings of the input word are encoded in SLPs labelling the transitions of the NFA (DFA) in the same way, as in the SLP representing the input text. To this end, the SLPs are locally decompressed and then recompressed in a uniform way. Furthermore, in order to reflect the recompression in the NFA, we need to modify it only a little, in particular its size stays polynomial in the input size.Using this technique it is shown that the compressed membership for NFA with compressed labels is in NP, thus confirming the conjecture of Plandowski and Rytter (Jewels Are Forever, pp. 262–272, Springer, Berlin, 1999) and extending the partial result of Lohrey and Mathissen (in CSR, LNCS, vol. 6651, pp. 275–288, Springer, Berlin, 2011); as this problem is known to be NP-hard (in Plandowski and Rytter, Jewels Are Forever, pp. 262–272, Springer, Berlin, 1999), we settle its exact computational complexity. Moreover, the same technique applied to the compressed membership for DFA with compressed labels yields that this problem is in P, and this problem is known to be P-hard (in Markey and Schnoebelen, Inf. Process. Lett. 90(1):3–6, 2004; Beaudry et al., SIAM J. Comput. 26(1):138–152, 1997).

[1]  Anca Muscholl,et al.  Pattern Matching and Membership for Hierarchical Message Sequence Charts , 2002, Theory of Computing Systems.

[2]  Pawel Gawrychowski Simple and efficient LZW-compressed multiple pattern matching , 2014, J. Discrete Algorithms.

[3]  Wojciech Plandowski,et al.  Complexity of Language Recognition Problems for Compressed Words , 1999, Jewels are Forever.

[4]  Artur Jez,et al.  Complexity of Equations over Sets of Natural Numbers , 2009, Theory of Computing Systems.

[5]  Mikkel Thorup,et al.  String Matching in Lempel—Ziv Compressed Strings , 1998, Algorithmica.

[6]  Pawel Gawrychowski,et al.  Pattern Matching in Lempel-Ziv Compressed Strings: Fast, Simple, and Deterministic , 2011, ESA.

[7]  Rastislav Královič,et al.  Mathematical Foundations of Computer Science 2006, 31st International Symposium, MFCS 2006, Stará Lesná, Slovakia, August 28-September 1, 2006, Proceedings , 2006, MFCS.

[8]  Markus Lohrey,et al.  Compressed Membership Problems for Regular Expressions and Hierarchical Automata , 2010, Int. J. Found. Comput. Sci..

[9]  Artur Jez,et al.  One-Nonterminal Conjunctive Grammars over a Unary Alphabet , 2009, CSR.

[10]  Wojciech Rytter,et al.  Almost-optimal fully LZW-compressed pattern matching , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).

[11]  Markus Lohrey,et al.  Querying and Embedding Compressed Texts , 2006, MFCS.

[12]  Artur Jez,et al.  Recompression: a simple and powerful technique for word equations , 2012, STACS.

[13]  Wojciech Rytter,et al.  Faster Algorithm for Bisimulation Equivalence of Normed Context-Free Processes , 2006, MFCS.

[14]  Artur Jez,et al.  Faster Fully Compressed Pattern Matching by Recompression , 2011, ICALP.

[15]  Abhi Shelat,et al.  The smallest grammar problem , 2005, IEEE Transactions on Information Theory.

[16]  Wojciech Plandowski,et al.  Efficient algorithms for Lempel-Ziv encoding , 1996 .

[17]  Pawel Gawrychowski,et al.  Optimal Pattern Matching in LZW Compressed Strings , 2011, TALG.

[18]  Gonzalo Navarro,et al.  Practical and flexible pattern matching over Ziv-Lempel compressed text , 2004, J. Discrete Algorithms.

[19]  Wojciech Rytter,et al.  Application of Lempel-Ziv factorization to the approximation of grammar-based compression , 2002, Theor. Comput. Sci..

[20]  Mark de Berg,et al.  Multi-method dispatching: a geometric approach with applications to string matching problems , 1999, STOC '99.

[21]  Gad M. Landau,et al.  Random access to grammar-compressed strings , 2010, SODA '11.

[22]  Kurt Mehlhorn,et al.  Maintaining dynamic sequences under equality tests in polylogarithmic time , 1994, SODA '94.

[23]  Markus Lohrey,et al.  Algorithmics on SLP-compressed strings: A survey , 2012, Groups Complex. Cryptol..

[24]  Denis Thérien,et al.  Finite Moniods: From Word to Circuit Evaluation , 1997, SIAM J. Comput..

[25]  Stephen Alstrup,et al.  Pattern matching in dynamic texts , 2000, SODA '00.

[26]  Wojciech Plandowski Satisfiability of word equations with constants is in PSPACE , 2004, JACM.

[27]  Slawomir Lasota,et al.  Fast equivalence-checking for normed context-free processes , 2010, FSTTCS.

[28]  Pawel Gawrychowski Tying up the loose ends in fully LZW-compressed pattern matching , 2012, STACS.

[29]  S. Rao Kosaraju Pattern Matching in Compressed Texts , 1995, FSTTCS.

[30]  Jeremy MacDonald Compressed Words and Automorphisms in Fully Residually Free Groups , 2010, Int. J. Algebra Comput..

[31]  Gary Benson,et al.  Let sleeping files lie: pattern matching in Z-compressed files , 1994, SODA '94.

[32]  Markus Lohrey,et al.  Compressed Membership in Automata with Compressed Labels , 2011, CSR.

[33]  Wojciech Plandowski,et al.  Application of Lempel-Ziv Encodings to the Solution of Words Equations , 1998, ICALP.

[34]  V. Rich Personal communication , 1989, Nature.

[35]  Markus Lohrey,et al.  Efficient Computation in Groups Via Compression , 2007, CSR.

[36]  Yury Lifshits Solving Classical String Problems an Compressed Texts , 2006, Combinatorial and Algorithmic Foundations of Pattern and Association Discovery.

[37]  Anca Muscholl,et al.  Pattern Matching and Membership for Hierarchical Message Sequence Charts , 2002, LATIN.

[38]  Wojciech Plandowski,et al.  Testing Equivalence of Morphisms on Context-Free Languages , 1994, ESA.

[39]  Ayumi Shinohara,et al.  Multiple pattern matching in LZW compressed text , 1998, Proceedings DCC '98 Data Compression Conference (Cat. No.98TB100225).

[40]  Philippe Schnoebelen,et al.  A PTIME-complete matching problem for SLP-compressed words , 2004, Inf. Process. Lett..

[41]  G. Paun,et al.  Jewels are Forever , 1999, Springer Berlin Heidelberg.

[42]  Markus Lohrey,et al.  Word Problems and Membership Problems on Compressed Words , 2006, SIAM J. Comput..

[43]  Wojciech Plandowski,et al.  Efficient Algorithms for Lempel-Zip Encoding (Extended Abstract) , 1996, SWAT.

[44]  Wojciech Plandowski,et al.  Randomized Efficient Algorithms for Compressed Strings: The Finger-Print Approach (Extended Abstract) , 1996, CPM.