Toward high-efficiency solution-processed tandem solar cells

Tandem solar cells (TSCs) based on solution-processable semiconductors, including metal-halide perovskites and organic materials, show great promise for overcoming the Shockley-Queisser efficiency limit at low cost. However, difficulty in obtaining low-bandgap (<1.1 eV) perovskite and organic absorbers restricts the spectral range of solarenergy conversion, limiting the possibility of reaching ultrahigh efficiencies. Here we carry out detailed balance limit computations for a wide range of solution-processable materials in combination with a standard perovskite top-cell. Theoretical efficiency of 43% has been calculated for a tandem cell with a bandgap combination of 1.55 eV (perovskite) and 1.0 eV (bottom-cell material) under 1-sun illumination. We find that radiative coupling between the subcells contributes substantially (>11% absolute gain) to the ultimate efficiency via photon recycling. We emphasize the significance of using materials with high luminescence quantum efficiencies to benefit from this important effect. Initial laboratory demonstration of monolithic TSCs operating in the radiative-coupling regime is currently underway.

[1]  M. Calvo,et al.  ABX3 Perovskites for Tandem Solar Cells , 2017 .

[2]  Marcus L. Böhm,et al.  Solution-processable singlet fission photovoltaic devices. , 2015, Nano letters.

[3]  Teodor K. Todorov,et al.  Materials perspectives for next-generation low-cost tandem solar cells , 2017, Solar Energy Materials and Solar Cells.

[4]  Dawei Di,et al.  Perovskite/Colloidal Quantum Dot Tandem Solar Cells: Theoretical Modeling and Monolithic Structure , 2018 .

[5]  S. Jang,et al.  Solution-processed colloidal quantum dot/organic hybrid tandem photovoltaic devices with 8.3% efficiency , 2017 .

[6]  Alberto Salleo,et al.  Semi-transparent perovskite solar cells for tandems with silicon and CIGS , 2015 .

[7]  Ahmad R. Kirmani,et al.  Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells , 2015 .

[8]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[9]  Supratik Guha,et al.  Monolithic Perovskite‐CIGS Tandem Solar Cells via In Situ Band Gap Engineering , 2015 .

[10]  A. Uddin,et al.  Tandem perovskite solar cells , 2018 .

[11]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[12]  Tao Song,et al.  High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering , 2014, Nano Research.

[13]  Ahmad R. Kirmani,et al.  Hybrid Tandem Quantum Dot/Organic Solar Cells with Enhanced Photocurrent and Efficiency via Ink and Interlayer Engineering , 2018 .

[14]  Zaifang Li,et al.  A two-terminal perovskite/perovskite tandem solar cell , 2016 .

[15]  Jiang Tang,et al.  Efficient Top-Illuminated Organic-Quantum Dots Hybrid Tandem Solar Cells with Complementary Absorption , 2017 .

[16]  Martin A. Green,et al.  Solar cell efficiency tables (version 52) , 2018, Progress in Photovoltaics: Research and Applications.

[17]  Jonathan P. Mailoa,et al.  A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction , 2015 .

[18]  Y. Xie,et al.  Light Emission from Silicon , 1993, Science.

[19]  O. Gunawan,et al.  Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage , 2014 .

[20]  Henry J. Snaith,et al.  Metal halide perovskite tandem and multiple-junction photovoltaics , 2017 .

[21]  Henry J Snaith,et al.  Present status and future prospects of perovskite photovoltaics , 2018, Nature Materials.

[22]  Oleksandr Voznyy,et al.  10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation. , 2016, Nano letters.

[23]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.