Automatic parameter tuning for Evolutionary Algorithms using a Bayesian Case-Based Reasoning system

The widespread use and applicability of Evolutionary Algorithms is due in part to the ability to adapt them to a particular problem-solving context by tuning their parameters. This is one of the problems that a user faces when applying an Evolutionary Algorithm to solve a given problem. Before running the algorithm, the user typically has to specify values for a number of parameters, such as population size, selection rate, and probability operators. This paper empirically assesses the performance of an automatic parameter tuning system in order to avoid the problems of time requirements and the interaction of parameters. The system, based on Bayesian Networks and Case-Based Reasoning methodology, estimates the best parameter setting for maximizing the performance of Evolutionary Algorithms. The algorithms are applied to solve a basic problem in constraint-based, geometric parametric modeling, as an instance of general constraint-satisfaction problems. The experimental results demonstrate the validity of the proposed system and its potential effectiveness for configuring algorithms.

[1]  Xiao-Shan Gao,et al.  Solving geometric constraint systems. I. A global propagation approach , 1998, Comput. Aided Des..

[2]  Christoph M. Hoffmann,et al.  Geometric constraint solver , 1995, Comput. Aided Des..

[3]  Michael Affenzeller,et al.  Parameter Meta-optimization of Metaheuristic Optimization Algorithms , 2011, EUROCAST.

[4]  Robert Joan-Arinyo,et al.  A constraint-based dynamic geometry system , 2010, Comput. Aided Des..

[5]  David Leake,et al.  Case-Based Reasoning: Experiences, Lessons and Future Directions , 1996 .

[6]  Frédéric Saubion,et al.  Autonomous operator management for evolutionary algorithms , 2010, J. Heuristics.

[7]  David J. Spiegelhalter,et al.  Probabilistic Networks and Expert Systems , 1999, Information Science and Statistics.

[8]  Dominique Michelucci,et al.  Solving Geometric Constraints By Homotopy , 1996, IEEE Trans. Vis. Comput. Graph..

[9]  M. Victoria Luzón,et al.  Constructive Geometric Constraint Solving: A New Application of Genetic Algorithms , 2002, PPSN.

[10]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[11]  Janet L. Kolodner,et al.  Case-Based Reasoning , 1989, IJCAI 1989.

[12]  David J. Sheskin,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 1997 .

[13]  Bjørn N. Freeman-Benson,et al.  An incremental constraint solver , 1990, CACM.

[14]  Robert Joan-Arinyo,et al.  Combining constructive and equational geometric constraint-solving techniques , 1999, TOGS.

[15]  F. Hutter,et al.  ParamILS: an automatic algorithm configuration framework , 2009 .

[16]  Fernando Díaz,et al.  Experimental evaluation of an automatic parameter setting system , 2010, Expert Syst. Appl..

[17]  A. E. Eiben,et al.  Parameter tuning for configuring and analyzing evolutionary algorithms , 2011, Swarm Evol. Comput..

[18]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  P. Hansen,et al.  Variable neighbourhood search: methods and applications , 2010, Ann. Oper. Res..

[20]  Mike Preuss,et al.  Experiments on metaheuristics: Methodological overview and open issues , 2007 .

[21]  Larry J. Eshelman,et al.  The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination , 1990, FOGA.

[22]  B. Žalik,et al.  Constraint-based Object Modelling , 1996 .

[23]  Mauro Birattari,et al.  Towards a theory of practice in metaheuristics design: A machine learning perspective , 2006, RAIRO Theor. Informatics Appl..

[24]  Fernando Díaz,et al.  Automatic parameter tuning with a Bayesian case-based reasoning system. A case of study , 2009, Expert Syst. Appl..

[25]  Kenneth de Jong,et al.  Evolutionary computation: a unified approach , 2007, GECCO.

[26]  Gregory F. Cooper,et al.  A Bayesian method for the induction of probabilistic networks from data , 1992, Machine Learning.

[27]  Chris J. Price,et al.  Deciding Parameter Values with Case-Based Reasoning , 1995, UK Workshop on Case-Based Reasoning.

[28]  Ralph Bergmann,et al.  Experience Management: Foundations, Development Methodology, and Internet-Based Applications , 2002 .

[29]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[30]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[31]  Maarten Grachten,et al.  Evolutionary Optimization of Music Performance Annotation , 2004, CMMR.

[32]  Farhi Marir,et al.  Case-based reasoning: A review , 1994, The Knowledge Engineering Review.

[33]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[34]  C. Hoffmann,et al.  A Brief on Constraint Solving , 2005 .

[35]  Finn Verner Jensen,et al.  Introduction to Bayesian Networks , 2008, Innovations in Bayesian Networks.

[36]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[37]  Oliver Kramer,et al.  An experimental analysis of evolution strategies and particle swarm optimisers using design of experiments , 2007, GECCO '07.

[38]  Thomas Bartz-Beielstein,et al.  Experimental Research in Evolutionary Computation - The New Experimentalism , 2010, Natural Computing Series.

[39]  Pascal Bouvry,et al.  Evolutionary Algorithm Parameter Tuning with Sensitivity Analysis , 2011, SIIS.

[40]  T. Hassard,et al.  Applied Linear Regression , 2005 .

[41]  Fernando Díaz,et al.  A model for parameter setting based on Bayesian networks , 2008, Eng. Appl. Artif. Intell..

[42]  Farhi Marir,et al.  Case-based reasoning: a categorized bibliography , 1994, The Knowledge Engineering Review.

[43]  C. Hoffmann,et al.  Symbolic and numerical techniques for constraint solving , 1998 .

[44]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[45]  M. Victoria Luzón,et al.  Genetic algorithms for root multiselection in constructive geometric constraint solving , 2003, Comput. Graph..

[46]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[47]  A. E. Eiben,et al.  Comparing parameter tuning methods for evolutionary algorithms , 2009, 2009 IEEE Congress on Evolutionary Computation.

[48]  Jay L. Devore,et al.  Probability and statistics for engineering and the sciences , 1982 .

[49]  M. Victoria Luzón,et al.  Modeling the Performance of Evolutionary Algorithms on the Root Identification Problem: A Case Study with PBIL and CHC Algorithms , 2011, Evolutionary Computation.

[50]  Zbigniew Michalewicz,et al.  Parameter Setting in Evolutionary Algorithms , 2007, Studies in Computational Intelligence.

[51]  Rüdiger Dillmann,et al.  Computer-Aided Design and Manufacturing , 1986, Symbolic Computation.

[52]  David Heckerman,et al.  A Tutorial on Learning with Bayesian Networks , 1999, Innovations in Bayesian Networks.

[53]  Ramón López de Mántaras,et al.  Ai and Music: From Composition to Expressive Performance , 2002, AI Mag..

[54]  N. Draper,et al.  Applied Regression Analysis , 1967 .

[55]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[56]  Alan E. Middleditch,et al.  Connectivity analysis: a tool for processing geometric constraints , 1996, Comput. Aided Des..

[57]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[58]  Solomon Eyal Shimony,et al.  Cost-Based Abduction and MAP Explanation , 1994, Artif. Intell..

[59]  Oliver Kramer,et al.  Evolutionary self-adaptation: a survey of operators and strategy parameters , 2010, Evol. Intell..

[60]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[61]  Thomas Stützle,et al.  Evaluating Las Vegas Algorithms: Pitfalls and Remedies , 1998, UAI.

[62]  Xiao-Shan Gao,et al.  Solving geometric constraint systems. II. A symbolic approach and decision of Rc-constructibility , 1998, Comput. Aided Des..

[63]  M. Victoria Luzón,et al.  Parameter tuning of PBIL and CHC evolutionary algorithms applied to solve the Root Identification Problem , 2011, Appl. Soft Comput..

[64]  Joseph L. Mundy,et al.  Wu's Method and its Application to Perspective Viewing , 1988, Artif. Intell..

[65]  G. Sunde,et al.  A CAD System with Declarative Specification of Shape , 1987 .

[66]  M. Victoria Luzón,et al.  Searching the Solution Space in Constructive Geometric Constraint Solving with Genetic Algorithms , 2005, Applied Intelligence.

[67]  Thomas Bartz-Beielstein,et al.  Sequential parameter optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[68]  Ravindra K. Ahuja,et al.  Use of Representative Operation Counts in Computational Testing of Algorithms , 1996, INFORMS J. Comput..

[69]  Hans-Georg Beyer,et al.  Self-Adaptation in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[70]  Christopher K. Riesbeck,et al.  Inside Case-Based Reasoning , 1989 .

[71]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[72]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .