A Computational Study of the Homogeneous Algorithm for Large-scale Convex Optimization

Recently the authors have proposed a homogeneous and self-dual algorithm for solving the monotone complementarity problem (MCP) [5]. The algorithm is a single phase interior-point type method; nevertheless, it yields either an approximate optimal solution or detects a possible infeasibility of the problem. In this paper we specialize the algorithm to the solution of general smooth convex optimization problems, which also possess nonlinear inequality constraints and free variables. We discuss an implementation of the algorithm for large-scale sparse convex optimization. Moreover, we present computational results for solving quadratically constrained quadratic programming and geometric programming problems, where some of the problems contain more than 100,000 constraints and variables. The results indicate that the proposed algorithm is also practically efficient.

[1]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[2]  David P. Baron Quadratic programming with quadratic constraints , 1972 .

[3]  Clarence Zener,et al.  Geometric Programming , 1974 .

[4]  R. A. Cuninghame-Green,et al.  Applied geometric programming , 1976 .

[5]  Ron S. Dembo,et al.  Second order algorithms for the posynomial geometric programming dual, part I: Analysis , 1979, Math. Program..

[6]  E. Phan-huy-Hao,et al.  Quadratically constrained quadratic programming: Some applications and a method for solution , 1982, Z. Oper. Research.

[7]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[8]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[9]  Michael A. Saunders,et al.  On projected newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method , 1986, Math. Program..

[10]  M. Kojima,et al.  A primal-dual interior point algorithm for linear programming , 1988 .

[11]  Y. Ye,et al.  On some efficient interior point methods for nonlinear convex programming , 1991 .

[12]  Florian Jarre,et al.  On the convergence of the method of analytic centers when applied to convex quadratic programs , 1991, Math. Program..

[13]  Sanjay Mehrotra,et al.  A method of analytic centers for quadratically constrained convex quadratic programs , 1991 .

[14]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[15]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[16]  Shinji Mizuno,et al.  A primal—dual infeasible-interior-point algorithm for linear programming , 1993, Math. Program..

[17]  R. Tyrrell Rockafellar,et al.  Asymptotic Theory for Solutions in Statistical Estimation and Stochastic Programming , 1993, Math. Oper. Res..

[18]  Robert J. Vanderbei,et al.  Symmetric indefinite systems for interior point methods , 1993, Math. Program..

[19]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[20]  Osman Güler,et al.  Existence of Interior Points and Interior Paths in Nonlinear Monotone Complementarity Problems , 1993, Math. Oper. Res..

[21]  Hector A. Rosales-Macedo Nonlinear Programming: Theory and Algorithms (2nd Edition) , 1993 .

[22]  K. Anstreicher,et al.  On the convergence of an infeasible primal-dual interior-point method for convex programming , 1994 .

[23]  Arkadi Nemirovski,et al.  Potential Reduction Polynomial Time Method for Truss Topology Design , 1994, SIAM J. Optim..

[24]  Roy E. Marsten,et al.  Feature Article - Interior Point Methods for Linear Programming: Computational State of the Art , 1994, INFORMS J. Comput..

[25]  J. Vial Computational experience with a primal-dual interior-point method for smooth convex programming , 1994 .

[26]  Jean-Philippe Vial,et al.  Experimental Behavior of an Interior Point Cutting Plane Algorithm for Convex Programming: An Application to Geometric Programming , 1994, Discret. Appl. Math..

[27]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[28]  Shinji Mizuno,et al.  An O(√nL)-Iteration Homogeneous and Self-Dual Linear Programming Algorithm , 1994, Math. Oper. Res..

[29]  Tamás Terlaky,et al.  A logarithmic barrier cutting plane method for convex programming , 1995, Ann. Oper. Res..

[30]  Erling D. Andersen,et al.  Presolving in linear programming , 1995, Math. Program..

[31]  F. Potra,et al.  Homogeneous Interior{point Algorithms for Semideenite Programming , 1995 .

[32]  Bala Shetty,et al.  The Nonlinear Resource Allocation Problem , 1995, Oper. Res..

[33]  E. Andersen Finding all linearly dependent rows in large-scale linear programming , 1995 .

[34]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[35]  Jacek Gondzio,et al.  Solving nonlinear multicommodity flow problems by the analytic center cutting plane method , 1997, Math. Program..

[36]  Yinyu Ye,et al.  A simplified homogeneous and self-dual linear programming algorithm and its implementation , 1996, Ann. Oper. Res..

[37]  Hiroshi Yamashita,et al.  Superlinear and quadratic convergence of some primal-dual interior point methods for constrained optimization , 1996, Math. Program..

[38]  T. Tsuchiya,et al.  On the formulation and theory of the Newton interior-point method for nonlinear programming , 1996 .

[39]  Roland W. Freund,et al.  A QMR-based interior-point algorithm for solving linear programs , 1997, Math. Program..

[40]  Yinyu Ye,et al.  An infeasible interior-point algorithm for solving primal and dual geometric programs , 1997, Math. Program..

[41]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[42]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[43]  J. Gondzio,et al.  Using an interior point method for the master problem in a decomposition approach , 1997 .

[44]  Yinyu Ye,et al.  An Efficient Algorithm for Minimizing a Sum of Euclidean Norms with Applications , 1997, SIAM J. Optim..

[45]  Etienne de Klerk,et al.  Initialization in semidefinite programming via a self-dual skew-symmetric embedding , 1997, Oper. Res. Lett..

[46]  F. Potra,et al.  On homogeneous interrior-point algorithms for semidefinite programming , 1998 .

[47]  Yinyu Ye,et al.  On a homogeneous algorithm for the monotone complementarity problem , 1999, Math. Program..