Bounded curvature triangle mesh subdivision with the convex hull property

The masks for Loop’s triangle subdivision surface algorithm are modified resulting in surfaces with bounded curvature and the convex hull property. New edge masks are generated using a cubic polynomial mask equation whose Chebyshev coefficients are closely related to the eigenvalues of the corresponding subdivision matrix. The mask equation is found to satisfy a set of smoothness constraints on these eigenvalues. We observe that controlling the root structure of the mask equation is important for deriving subdivision masks with non-negative weights.

[1]  Hartmut Prautzsch,et al.  A G2-Subdivision Algorithm , 1996, Geometric Modelling.

[2]  M. A. Sabin,et al.  Cubic Recursive Division With Bounded Curvature , 1991, Curves and Surfaces.

[3]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[4]  D. Zorin Stationary Subdivision and Multiresolution Surface Representations , 1997 .

[5]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[6]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[7]  A. A. Ball,et al.  Conditions for tangent plane continuity over recursively generated B-spline surfaces , 1988, TOGS.

[8]  F. Holt Toward a curvature-continuous stationary subdivision algorithm , 1996 .

[9]  Hartmut Prautzsch,et al.  Improved triangular subdivision schemes , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).

[10]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[11]  M. Sabin The use of piecewise forms for the numerical representation of shape , 1976 .

[12]  Hartmut Prautzsch,et al.  Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..

[13]  G. Umlauf Analyzing the Characteristic Map of Triangular Subdivision Schemes , 2000 .

[14]  Jean Schweitzer,et al.  Analysis and application of subdivision surfaces , 1996 .

[15]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[16]  Ulrich Reif,et al.  CURVATURE SMOOTHNESS OF SUBDIVISION SURFACES , 2000 .