Bounded curvature triangle mesh subdivision with the convex hull property
暂无分享,去创建一个
[1] Hartmut Prautzsch,et al. A G2-Subdivision Algorithm , 1996, Geometric Modelling.
[2] M. A. Sabin,et al. Cubic Recursive Division With Bounded Curvature , 1991, Curves and Surfaces.
[3] Malcolm A. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1998 .
[4] D. Zorin. Stationary Subdivision and Multiresolution Surface Representations , 1997 .
[5] Ulrich Reif,et al. A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..
[6] Tony DeRose,et al. Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.
[7] A. A. Ball,et al. Conditions for tangent plane continuity over recursively generated B-spline surfaces , 1988, TOGS.
[8] F. Holt. Toward a curvature-continuous stationary subdivision algorithm , 1996 .
[9] Hartmut Prautzsch,et al. Improved triangular subdivision schemes , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).
[10] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[11] M. Sabin. The use of piecewise forms for the numerical representation of shape , 1976 .
[12] Hartmut Prautzsch,et al. Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..
[13] G. Umlauf. Analyzing the Characteristic Map of Triangular Subdivision Schemes , 2000 .
[14] Jean Schweitzer,et al. Analysis and application of subdivision surfaces , 1996 .
[15] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[16] Ulrich Reif,et al. CURVATURE SMOOTHNESS OF SUBDIVISION SURFACES , 2000 .