Wasserstein Distances, Geodesics and Barycenters of Merge Trees

This paper presents a unified computational framework for the estimation of distances, geodesics and barycenters of merge trees. We extend recent work on the edit distance [104] and introduce a new metric, called the Wasserstein distance between merge trees, which is purposely designed to enable efficient computations of geodesics and barycenters. Specifically, our new distance is strictly equivalent to the $L$2-Wasserstein distance between extremum persistence diagrams, but it is restricted to a smaller solution space, namely, the space of rooted partial isomorphisms between branch decomposition trees. This enables a simple extension of existing optimization frameworks [110] for geodesics and barycenters from persistence diagrams to merge trees. We introduce a task-based algorithm which can be generically applied to distance, geodesic, barycenter or cluster computation. The task-based nature of our approach enables further accelerations with shared-memory parallelism. Extensive experiments on public ensembles and SciVis contest benchmarks demonstrate the efficiency of our approach - with barycenter computations in the orders of minutes for the largest examples - as well as its qualitative ability to generate representative barycenter merge trees, visually summarizing the features of interest found in the ensemble. We show the utility of our contributions with dedicated visualization applications: feature tracking, temporal reduction and ensemble clustering. We provide a lightweight C++ implementation that can be used to reproduce our results.

[1]  Ross T. Whitaker,et al.  Curve Boxplot: Generalization of Boxplot for Ensembles of Curves , 2014, IEEE Transactions on Visualization and Computer Graphics.

[2]  Martin Falk,et al.  An Overview of the Topology ToolKit , 2019, Mathematics and Visualization.

[3]  Hans Hagen,et al.  A Survey of Topology‐based Methods in Visualization , 2016, Comput. Graph. Forum.

[4]  Vijay Natarajan,et al.  Felix: A Topology Based Framework for Visual Exploration of Cosmic Filaments , 2015, IEEE Transactions on Visualization and Computer Graphics.

[5]  Gunther H. Weber,et al.  Parallel peak pruning for scalable SMP contour tree computation , 2016, 2016 IEEE 6th Symposium on Large Data Analysis and Visualization (LDAV).

[6]  Leila De Floriani,et al.  Morse complexes for shape segmentation and homological analysis: discrete models and algorithms , 2015, Comput. Graph. Forum.

[7]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[8]  Valerio Pascucci,et al.  Interstitial and Interlayer Ion Diffusion Geometry Extraction in Graphitic Nanosphere Battery Materials , 2016, IEEE Transactions on Visualization and Computer Graphics.

[9]  Henry Adams,et al.  Persistence Images: A Stable Vector Representation of Persistent Homology , 2015, J. Mach. Learn. Res..

[10]  Valerio Pascucci,et al.  Morse-smale complexes for piecewise linear 3-manifolds , 2003, SCG '03.

[11]  Patricio A. Vela,et al.  A Comparative Study of Efficient Initialization Methods for the K-Means Clustering Algorithm , 2012, Expert Syst. Appl..

[12]  Julien Tierny,et al.  A Topological Data Analysis perspective on noncovalent interactions in relativistic calculations , 2019, International Journal of Quantum Chemistry.

[13]  Hans-Christian Hege,et al.  Probabilistic Local Features in Uncertain Vector Fields with Spatial Correlation , 2012, Comput. Graph. Forum.

[14]  Gerik Scheuermann,et al.  Critical Points of Gaussian‐Distributed Scalar Fields on Simplicial Grids , 2016, Comput. Graph. Forum.

[15]  Chris R. Johnson,et al.  A Next Step: Visualizing Errors and Uncertainty , 2003, IEEE Computer Graphics and Applications.

[16]  Julien Tierny,et al.  Progressive Wasserstein Barycenters of Persistence Diagrams , 2019, IEEE Transactions on Visualization and Computer Graphics.

[17]  Rüdiger Westermann,et al.  Visualizing the Positional and Geometrical Variability of Isosurfaces in Uncertain Scalar Fields , 2011, Comput. Graph. Forum.

[18]  H. Hege,et al.  APPROXIMATE LEVEL-CROSSING PROBABILITIES FOR INTERACTIVE VISUALIZATION OF UNCERTAIN ISOCONTOURS , 2013 .

[19]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[20]  Herbert Edelsbrunner,et al.  Hierarchical Morse—Smale Complexes for Piecewise Linear 2-Manifolds , 2003, Discret. Comput. Geom..

[21]  Ray W. Grout,et al.  Stability of Dissipation Elements: A Case Study in Combustion , 2014, Comput. Graph. Forum.

[22]  Peter John Wood,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images , 2022 .

[23]  Paul Rosen,et al.  From Quantification to Visualization: A Taxonomy of Uncertainty Visualization Approaches , 2011, WoCoUQ.

[24]  Alireza Entezari,et al.  Isosurface Visualization of Data with Nonparametric Models for Uncertainty , 2016, IEEE Transactions on Visualization and Computer Graphics.

[25]  Vijay Natarajan,et al.  A hybrid parallel algorithm for computing and tracking level set topology , 2012, 2012 19th International Conference on High Performance Computing.

[26]  Jack Snoeyink,et al.  Simplifying flexible isosurfaces using local geometric measures , 2004, IEEE Visualization 2004.

[27]  Alireza Entezari,et al.  Uncertainty Quantification in Linear Interpolation for Isosurface Extraction , 2013, IEEE Transactions on Visualization and Computer Graphics.

[28]  Julien Tierny,et al.  Lifted Wasserstein Matcher for Fast and Robust Topology Tracking , 2018, 2018 IEEE 8th Symposium on Large Data Analysis and Visualization (LDAV).

[29]  Alexander Bock,et al.  TopoAngler: Interactive Topology-Based Extraction of Fishes , 2018, IEEE Transactions on Visualization and Computer Graphics.

[30]  Dmitriy Morozov,et al.  Geometry Helps to Compare Persistence Diagrams , 2016, ALENEX.

[31]  Holger Theisel,et al.  Uncertain topology of 3D vector fields , 2011, 2011 IEEE Pacific Visualization Symposium.

[32]  Joseph Salmon,et al.  Mandatory Critical Points of 2D Uncertain Scalar Fields , 2014, Comput. Graph. Forum.

[33]  Valerio Pascucci,et al.  Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[34]  J. Tierny,et al.  Visualizing Ensembles of Viscous Fingers , 2016 .

[35]  Bernd Hamann,et al.  A Multi-Resolution Data Structure for 2-Dimensional Morse Functions , 2003, IEEE Visualization.

[36]  Valerio Pascucci,et al.  Shared-Memory Parallel Computation of Morse-Smale Complexes with Improved Accuracy , 2019, IEEE Transactions on Visualization and Computer Graphics.

[37]  Brian Summa,et al.  Persistence Atlas for Critical Point Variability in Ensembles , 2018, IEEE Transactions on Visualization and Computer Graphics.

[38]  Salman Parsa,et al.  A deterministic o(m log m) time algorithm for the reeb graph , 2012, SoCG '12.

[39]  Herbert Edelsbrunner,et al.  Hierarchical morse complexes for piecewise linear 2-manifolds , 2001, SCG '01.

[40]  John B. Bell,et al.  Interactive Exploration and Analysis of Large-Scale Simulations Using Topology-Based Data Segmentation , 2011, IEEE Transactions on Visualization and Computer Graphics.

[41]  Hans-Peter Seidel,et al.  Extended Branch Decomposition Graphs: Structural Comparison of Scalar Data , 2014, Comput. Graph. Forum.

[42]  Daniela Giorgi,et al.  Reeb graphs for shape analysis and applications , 2008, Theor. Comput. Sci..

[43]  Utkarsh Ayachit,et al.  ParaView Catalyst: Enabling In Situ Data Analysis and Visualization , 2015, ISAV@SC.

[44]  Martin Kraus Visualization of Uncertain Contour Trees , 2010, IMAGAPP/IVAPP.

[45]  Rüdiger Westermann,et al.  Visualization of Global Correlation Structures in Uncertain 2D Scalar Fields , 2012, Comput. Graph. Forum.

[46]  Valerio Pascucci,et al.  Robust on-line computation of Reeb graphs: simplicity and speed , 2007, ACM Trans. Graph..

[47]  Vijay Natarajan,et al.  Computing Reeb Graphs as a Union of Contour Trees , 2013, IEEE Transactions on Visualization and Computer Graphics.

[48]  Valerio Pascucci,et al.  TopoMS: Comprehensive topological exploration for molecular and condensed‐matter systems , 2018, J. Comput. Chem..

[49]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[50]  Bernd Hamann,et al.  Topologically Clean Distance Fields , 2007, IEEE Transactions on Visualization and Computer Graphics.

[51]  Valerio Pascucci,et al.  Uncertainty Visualization of 2D Morse Complex Ensembles Using Statistical Summary Maps , 2019, IEEE Transactions on Visualization and Computer Graphics.

[52]  Christoph Garth,et al.  Fuzzy Contour Trees: Alignment and Joint Layout of Multiple Contour Trees , 2020, Comput. Graph. Forum.

[53]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[54]  Mark Gahegan,et al.  Visualizing Geospatial Information Uncertainty: What We Know and What We Need to Know , 2005 .

[55]  Charles Elkan,et al.  Using the Triangle Inequality to Accelerate k-Means , 2003, ICML.

[56]  Hans-Christian Hege,et al.  Uncertain 2D Vector Field Topology , 2010, Comput. Graph. Forum.

[57]  Valerio Pascucci,et al.  Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees , 2009, IEEE Transactions on Visualization and Computer Graphics.

[58]  Steve Oudot,et al.  Large Scale computation of Means and Clusters for Persistence Diagrams using Optimal Transport , 2018, NeurIPS.

[59]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[60]  Talha Bin Masood,et al.  Edit Distance between Merge Trees , 2020, IEEE Transactions on Visualization and Computer Graphics.

[61]  Valerio Pascucci,et al.  Understanding the Structure of the Turbulent Mixing Layer in Hydrodynamic Instabilities , 2006, IEEE Transactions on Visualization and Computer Graphics.

[62]  Scott Klasky,et al.  In Situ Methods, Infrastructures, and Applications on High Performance Computing Platforms , 2016, Comput. Graph. Forum.

[63]  Julien Jomier,et al.  Task-based Augmented Reeb Graphs with Dynamic ST-Trees , 2019, EGPGV@EuroVis.

[64]  Ross T. Whitaker,et al.  Contour Boxplots: A Method for Characterizing Uncertainty in Feature Sets from Simulation Ensembles , 2013, IEEE Transactions on Visualization and Computer Graphics.

[65]  P. Diggle Analysis of Longitudinal Data , 1995 .

[66]  Gunther H. Weber,et al.  Interleaving Distance between Merge Trees , 2013 .

[67]  Hans-Christian Hege,et al.  Probabilistic Marching Cubes , 2011, Comput. Graph. Forum.

[68]  Ulrich Bauer,et al.  Distributed Computation of Persistent Homology , 2014, ALENEX.

[69]  T. Sousbie The persistent cosmic web and its filamentary structure I: Theory and implementation , 2010, 1009.4015.

[70]  Talha Bin Masood,et al.  Scalar Field Comparison with Topological Descriptors: Properties and Applications for Scientific Visualization , 2021, Comput. Graph. Forum.

[71]  Vijay Natarajan,et al.  Parallel Computation of 3D Morse‐Smale Complexes , 2012, Comput. Graph. Forum.

[72]  Alex T. Pang,et al.  Approaches to uncertainty visualization , 1996, The Visual Computer.

[73]  T. Banchoff Critical Points and Curvature for Embedded Polyhedral Surfaces , 1970 .

[74]  Vijay Natarajan,et al.  A parallel and memory efficient algorithm for constructing the contour tree , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).

[75]  L. Kantorovich On the Translocation of Masses , 2006 .

[76]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[77]  Rüdiger Westermann,et al.  Streamline Variability Plots for Characterizing the Uncertainty in Vector Field Ensembles , 2016, IEEE Transactions on Visualization and Computer Graphics.

[78]  Kaizhong Zhang,et al.  A constrained edit distance between unordered labeled trees , 1996, Algorithmica.

[79]  Hans-Christian Hege,et al.  Two-Dimensional Time-Dependent Vortex Regions Based on the Acceleration Magnitude , 2011, IEEE Transactions on Visualization and Computer Graphics.

[80]  Hans-Christian Hege,et al.  Nonparametric Models for Uncertainty Visualization , 2013, Comput. Graph. Forum.

[81]  Jean-Philip Piquemal,et al.  Characterizing Molecular Interactions in Chemical Systems , 2014, IEEE Transactions on Visualization and Computer Graphics.

[82]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[83]  Valerio Pascucci,et al.  Multi-Resolution computation and presentation of Contour Trees , 2005 .

[84]  Rüdiger Westermann,et al.  Visualizing the Variability of Gradients in Uncertain 2D Scalar Fields , 2013, IEEE Transactions on Visualization and Computer Graphics.

[85]  Mikhail N. Vyalyi,et al.  Construction of contour trees in 3D in O(n log n) steps , 1998, SCG '98.

[86]  Bei Wang,et al.  Topological Data Analysis of Functional MRI Connectivity in Time and Space Domains , 2018, CNI@MICCAI.

[87]  Song Zhang,et al.  A CONTOUR TREE BASED VISUALIZATION FOR EXPLORING DATA WITH UNCERTAINTY , 2013 .

[88]  Andrzej Szymczak Hierarchy of Stable Morse Decompositions , 2013, IEEE Transactions on Visualization and Computer Graphics.

[89]  Kenneth I. Joy,et al.  Comparative Visual Analysis of Lagrangian Transport in CFD Ensembles , 2013, IEEE Transactions on Visualization and Computer Graphics.

[90]  Valerio Pascucci,et al.  Flow Visualization with Quantified Spatial and Temporal Errors Using Edge Maps , 2012, IEEE Transactions on Visualization and Computer Graphics.

[91]  Dimitri P. Bertsekas,et al.  A new algorithm for the assignment problem , 1981, Math. Program..

[92]  Hans-Christian Hege,et al.  Positional Uncertainty of Isocontours: Condition Analysis and Probabilistic Measures , 2011, IEEE Transactions on Visualization and Computer Graphics.

[93]  Erik W. Anderson,et al.  Visualization of Uncertainty without a Mean , 2013, IEEE Computer Graphics and Applications.

[94]  R. Forman A USER'S GUIDE TO DISCRETE MORSE THEORY , 2002 .

[95]  Joshua A. Levine,et al.  The Topology ToolKit , 2018, IEEE Transactions on Visualization and Computer Graphics.

[96]  Andrew Mercer,et al.  Noodles: A Tool for Visualization of Numerical Weather Model Ensemble Uncertainty , 2010, IEEE Transactions on Visualization and Computer Graphics.

[97]  Steve Oudot,et al.  Intrinsic Interleaving Distance for Merge Trees , 2019, ArXiv.

[98]  Lin Yan,et al.  A Structural Average of Labeled Merge Trees for Uncertainty Visualization , 2019, IEEE Transactions on Visualization and Computer Graphics.

[99]  Manuel Menezes de Oliveira Neto,et al.  Overview and State-of-the-Art of Uncertainty Visualization , 2014, Scientific Visualization.

[100]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[101]  Rüdiger Westermann,et al.  Visual Analysis of Spatial Variability and Global Correlations in Ensembles of Iso‐Contours , 2016, Comput. Graph. Forum.

[102]  Julien Jomier,et al.  Task-Based Augmented Contour Trees with Fibonacci Heaps , 2019, IEEE Transactions on Parallel and Distributed Systems.

[103]  Sayan Mukherjee,et al.  Fréchet Means for Distributions of Persistence Diagrams , 2012, Discrete & Computational Geometry.

[104]  Bernd Hamann,et al.  Measuring the Distance Between Merge Trees , 2014, Topological Methods in Data Analysis and Visualization.

[105]  Arthur Cayley,et al.  The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .

[106]  Ulrich Bauer,et al.  Measuring Distance between Reeb Graphs , 2013, SoCG.

[107]  Gerik Scheuermann,et al.  On the Interpolation of Data with Normally Distributed Uncertainty for Visualization , 2012, IEEE Transactions on Visualization and Computer Graphics.

[108]  Chris R. Johnson,et al.  Probabilistic Asymptotic Decider for Topological Ambiguity Resolution in Level-Set Extraction for Uncertain 2D Data , 2019, IEEE Transactions on Visualization and Computer Graphics.