Severe infections emerge from commensal bacteria by adaptive evolution

Bacteria responsible for the greatest global mortality colonize the human microbiota far more frequently than they cause severe infections. Whether mutation and selection among commensal bacteria are associated with infection is unknown. We investigated de novo mutation in 1163 Staphylococcus aureus genomes from 105 infected patients with nose colonization. We report that 72% of infections emerged from the nose, with infecting and nose-colonizing bacteria showing parallel adaptive differences. We found 2.8-to-3.6-fold adaptive enrichments of protein-altering variants in genes responding to rsp, which regulates surface antigens and toxin production; agr, which regulates quorum-sensing, toxin production and abscess formation; and host-derived antimicrobial peptides. Adaptive mutations in pathogenesis-associated genes were 3.1-fold enriched in infecting but not nose-colonizing bacteria. None of these signatures were observed in healthy carriers nor at the species-level, suggesting infection-associated, short-term, within-host selection pressures. Our results show that signatures of spontaneous adaptive evolution are specifically associated with infection, raising new possibilities for diagnosis and treatment.

[1]  Vincent A. Fischetti,et al.  Gram-positive pathogens , 2006 .

[2]  Daniel J. Wilson,et al.  Whole-Genome Sequencing Reveals the Contribution of Long-Term Carriers in Staphylococcus aureus Outbreak Investigation , 2017, Journal of Clinical Microbiology.

[3]  Stephen D. Bentley,et al.  Large scale genomic analysis shows no evidence for pathogen adaptation between the blood and cerebrospinal fluid niches during bacterial meningitis , 2017, Microbial genomics.

[4]  Ashutosh Kumar Singh,et al.  Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015 , 2016, The Lancet.

[5]  Howard Ochman,et al.  Cospeciation of gut microbiota with hominids , 2016, Science.

[6]  Konrad U. Förstner,et al.  Natural mutations in a Staphylococcus aureus virulence regulator attenuate cytotoxicity but permit bacteremia and abscess formation , 2016, Proceedings of the National Academy of Sciences.

[7]  Daniel J. Wilson,et al.  Within-host evolution of bacterial pathogens , 2016, Nature Reviews Microbiology.

[8]  David A. Clifton,et al.  Identifying lineage effects when controlling for population structure improves power in bacterial association studies , 2015, Nature Microbiology.

[9]  Minoru Kanehisa,et al.  KEGG as a reference resource for gene and protein annotation , 2015, Nucleic Acids Res..

[10]  Daniel J. Wilson,et al.  Evolutionary Trade-Offs Underlie the Multi-faceted Virulence of Staphylococcus aureus , 2015, PLoS biology.

[11]  Peter E. Chen,et al.  The advent of genome-wide association studies for bacteria. , 2015, Current opinion in microbiology.

[12]  G. Stacey,et al.  DNA Microarray-Based Identification of Genes Regulated by NtrC in Bradyrhizobium japonicum , 2015, Applied and Environmental Microbiology.

[13]  Daniel J. Wilson,et al.  ClonalFrameML: Efficient Inference of Recombination in Whole Bacterial Genomes , 2015, PLoS Comput. Biol..

[14]  S. Wigneshweraraj,et al.  What role does the quorum-sensing accessory gene regulator system play during Staphylococcus aureus bacteremia? , 2014, Trends in microbiology.

[15]  S. Molin,et al.  Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis , 2014, Nature Genetics.

[16]  F. Balloux,et al.  Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient , 2014, Genome Biology.

[17]  S. Alizon,et al.  What is a pathogen? Toward a process view of host-parasite interactions , 2014, Virulence.

[18]  Lars Jelsbak,et al.  Environmental Heterogeneity Drives Within-Host Diversification and Evolution of Pseudomonas aeruginosa , 2014, mBio.

[19]  K. Ramyar,et al.  Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors , 2014, Proceedings of the National Academy of Sciences.

[20]  W. Hanage,et al.  Comprehensive Identification of Single Nucleotide Polymorphisms Associated with Beta-lactam Resistance within Pneumococcal Mosaic Genes , 2014, PLoS genetics.

[21]  Daniel J. Wilson,et al.  Mobile elements drive recombination hotspots in the core genome of Staphylococcus aureus , 2014, Nature Communications.

[22]  Mario Recker,et al.  Predicting the virulence of MRSA from its genome sequence , 2014, Genome research.

[23]  Daniel J. Wilson,et al.  Prediction of Staphylococcus aureus Antimicrobial Resistance by Whole-Genome Sequencing , 2014, Journal of Clinical Microbiology.

[24]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[25]  Timothy J. Foster,et al.  Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus , 2013, Nature Reviews Microbiology.

[26]  S. West,et al.  Cooperation, Quorum Sensing, and Evolution of Virulence in Staphylococcus aureus , 2013, Infection and Immunity.

[27]  Roy Kishony,et al.  Genetic variation of a bacterial pathogen within individuals with cystic fibrosis provides a record of selective pressures , 2013, Nature Genetics.

[28]  S. Molin,et al.  Genome Analysis of a Transmissible Lineage of Pseudomonas aeruginosa Reveals Pathoadaptive Mutations and Distinct Evolutionary Paths of Hypermutators , 2013, PLoS genetics.

[29]  Keith A. Jolley,et al.  Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter , 2013, Proceedings of the National Academy of Sciences.

[30]  Richard G. Everitt,et al.  Within-Host Evolution of Staphylococcus aureus during Asymptomatic Carriage , 2013, PloS one.

[31]  Julian Parkhill,et al.  A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic , 2013, Genome research.

[32]  Daniel J. Wilson,et al.  Microevolutionary analysis of Clostridium difficile genomes to investigate transmission , 2012, Genome Biology.

[33]  R. Holzman,et al.  Nasal carriage as a source of agr-defective Staphylococcus aureus bacteremia. , 2012, The Journal of infectious diseases.

[34]  S. Foster,et al.  A privileged intraphagocyte niche is responsible for disseminated infection of Staphylococcus aureus in a zebrafish model , 2012, Cellular microbiology.

[35]  Sam P. Brown,et al.  Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control , 2012, Trends in microbiology.

[36]  Albert J. Vilella,et al.  Accurate extension of multiple sequence alignments using a phylogeny-aware graph algorithm , 2012, Bioinform..

[37]  Peter Donnelly,et al.  Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease , 2012, Proceedings of the National Academy of Sciences.

[38]  Daniel J. Wilson,et al.  A Population Genetics-Phylogenetics Approach to Inferring Natural Selection in Coding Sequences , 2011, PLoS genetics.

[39]  Haiming Wang,et al.  GeneDB—an annotation database for pathogens , 2011, Nucleic Acids Res..

[40]  G. McVean,et al.  De novo assembly and genotyping of variants using colored de Bruijn graphs , 2011, Nature Genetics.

[41]  Suzanne M. Paley,et al.  The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases , 2011, Nucleic Acids Res..

[42]  Joanna B. Goldberg,et al.  Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes , 2011, Nature Genetics.

[43]  Torsten Seemann,et al.  Evolution of Multidrug Resistance during Staphylococcus aureus Infection Involves Mutation of the Essential Two Component Regulator WalKR , 2011, PLoS pathogens.

[44]  M. Lei,et al.  Rsp Inhibits Attachment and Biofilm Formation by Repressing fnbA in Staphylococcus aureus MW2 , 2011, Journal of bacteriology.

[45]  A. Casadevall,et al.  Microbial Virulence as an Emergent Property: Consequences and Opportunities , 2011, PLoS pathogens.

[46]  Martin Goodson,et al.  Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. , 2011, Genome research.

[47]  R. Holzman,et al.  Mutations in agr do not persist in natural populations of methicillin-resistant Staphylococcus aureus. , 2010, The Journal of infectious diseases.

[48]  Robert J. Moore,et al.  Complete Genome Sequence of Staphylococcus aureus Strain JKD6159, a Unique Australian Clone of ST93-IV Community Methicillin-Resistant Staphylococcus aureus , 2010, Journal of bacteriology.

[49]  M. Schijffelen,et al.  Whole genome analysis of a livestock-associated methicillin-resistant Staphylococcus aureus ST398 isolate from a case of human endocarditis , 2010, BMC Genomics.

[50]  Jason Hinds,et al.  Evolutionary Genomics of Staphylococcus aureus Reveals Insights into the Origin and Molecular Basis of Ruminant Host Adaptation , 2010, Genome biology and evolution.

[51]  Hyun-Woo Rhee,et al.  Two Novel Point Mutations in Clinical Staphylococcus aureus Reduce Linezolid Susceptibility and Switch on the Stringent Response to Promote Persistent Infection , 2010, PLoS pathogens.

[52]  L. Miller,et al.  Body site colonization in patients with community-associated methicillin-resistant Staphylococcus aureus and other types of S. aureus skin infections. , 2010, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[53]  M. Quail,et al.  Genome Sequence of a Recently Emerged, Highly Transmissible, Multi-Antibiotic- and Antiseptic-Resistant Variant of Methicillin-Resistant Staphylococcus aureus, Sequence Type 239 (TW) , 2009, Journal of bacteriology.

[54]  A. Rambaut,et al.  Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus , 2009, Proceedings of the National Academy of Sciences.

[55]  Larry Wasserman,et al.  Genome-Wide Significance Levels and Weighted Hypothesis Testing. , 2009, Statistical science : a review journal of the Institute of Mathematical Statistics.

[56]  P. François,et al.  Transcriptome analysis of the responses of Staphylococcus aureus to antimicrobial peptides and characterization of the roles of vraDE and vraSR in antimicrobial resistance , 2009, BMC Genomics.

[57]  M. Rybak,et al.  Accessory gene regulator dysfunction: an advantage for Staphylococcus aureus in health-care settings? , 2009, The Journal of infectious diseases.

[58]  R. Lamichhane-Khadka,et al.  Genetic changes that correlate with the pine‐oil disinfectant‐reduced susceptibility mechanism of Staphylococcus aureus , 2008, Journal of applied microbiology.

[59]  R. Novick,et al.  Quorum sensing in staphylococci. , 2008, Annual review of genetics.

[60]  R. Novick,et al.  agr function in clinical Staphylococcus aureus isolates. , 2008, Microbiology.

[61]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[62]  P. Ward,et al.  Different bacterial gene expression patterns and attenuated host immune responses are associated with the evolution of low-level vancomycin resistance during persistent methicillin-resistant Staphylococcus aureus bacteraemia , 2008, BMC Microbiology.

[63]  Hanna Kokko,et al.  The tragedy of the commons in evolutionary biology. , 2007, Trends in ecology & evolution.

[64]  James M. Musser,et al.  Molecular Correlates of Host Specialization in Staphylococcus aureus , 2007, PloS one.

[65]  O. Schneewind,et al.  Genome Sequence of Staphylococcus aureus Strain Newman and Comparative Analysis of Staphylococcal Genomes: Polymorphism and Evolution of Two Major Pathogenicity Islands , 2007, Journal of bacteriology.

[66]  R. Knight,et al.  The Human Microbiome Project , 2007, Nature.

[67]  V. Nagarajan,et al.  SAMMD: Staphylococcus aureus Microarray Meta-Database , 2007, BMC Genomics.

[68]  B. Levin,et al.  Within-host evolution for the invasiveness of commensal bacteria: an experimental study of bacteremias resulting from Haemophilus influenzae nasal carriage. , 2007, The Journal of infectious diseases.

[69]  K. Rice,et al.  Transcriptional profiling of a Staphylococcus aureus clinical isolate and its isogenic agr and sarA mutants reveals global differences in comparison to the laboratory strain RN6390. , 2006, Microbiology.

[70]  R. Gomulkiewicz,et al.  Source–sink dynamics of virulence evolution , 2006, Nature Reviews Microbiology.

[71]  G. Sensabaugh,et al.  Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus , 2006, The Lancet.

[72]  Daniel J. Wilson,et al.  Estimating Diversifying Selection and Functional Constraint in the Presence of Recombination , 2006, Genetics.

[73]  E. Feil,et al.  Evolutionary Genetics of the Accessory Gene Regulator (agr) Locus in Staphylococcus aureus , 2005, Journal of bacteriology.

[74]  L. Cui,et al.  Staphylococcus Aureus Resistance in Genes Associated with Glycopeptide Dna Microarray-based Identification of Supplemental Material , 2005 .

[75]  Samuel V. Angiuoli,et al.  Insights on Evolution of Virulence and Resistance from the Complete Genome Analysis of an Early Methicillin-Resistant Staphylococcus aureus Strain and a Biofilm-Producing Methicillin-Resistant Staphylococcus epidermidis Strain , 2005, Journal of bacteriology.

[76]  A. Tomasz,et al.  Role of Penicillin-Binding Protein 2 (PBP2) in the Antibiotic Susceptibility and Cell Wall Cross-Linking of Staphylococcus aureus: Evidence for the Cooperative Functioning of PBP2, PBP4, and PBP2A , 2005, Journal of bacteriology.

[77]  F. Blattner,et al.  Mauve: multiple alignment of conserved genomic sequence with rearrangements. , 2004, Genome research.

[78]  B. Barrell,et al.  Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[79]  R. Zagursky,et al.  Transcription Profiling-Based Identification ofStaphylococcus aureus Genes Regulated by the agrand/or sarA Loci , 2001, Journal of bacteriology.

[80]  M. Kanehisa,et al.  Whole genome sequencing of meticillin-resistant Staphylococcus aureus , 2001, The Lancet.

[81]  Gina Pugliese,et al.  Nasal Carriage as a Source of Staphylococcus aureus Bacteremia , 2001, Infection Control & Hospital Epidemiology.

[82]  H Stammer,et al.  Nasal Carriage as a Source of Staphylococcus aureus Bacteremia , 2001 .

[83]  R. Shamir,et al.  A fast algorithm for joint reconstruction of ancestral amino acid sequences. , 2000, Molecular biology and evolution.

[84]  A. van Belkum,et al.  Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks , 1997, Clinical microbiology reviews.

[85]  L. Kann,et al.  Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. , 1996, Molecular biology and evolution.

[86]  D. Hartl,et al.  Population genetics of polymorphism and divergence. , 1992, Genetics.

[87]  M. Kreitman,et al.  Adaptive protein evolution at the Adh locus in Drosophila , 1991, Nature.

[88]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[89]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[90]  P. A. Murphy,et al.  Haemophilus influenzae bacteremia and meningitis resulting from survival of a single organism. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[91]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[92]  B. Spratt,et al.  Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. , 2000, Journal of clinical microbiology.

[93]  Dan Gusfield,et al.  Efficient algorithms for inferring evolutionary trees , 1991, Networks.