Extensive Diversity of Ionizing-Radiation-Resistant Bacteria Recovered from Sonoran Desert Soil and Description of Nine New Species of the Genus Deinococcus Obtained from a Single Soil Sample

ABSTRACT The ionizing-radiation-resistant fractions of two soil bacterial communities were investigated by exposing an arid soil from the Sonoran Desert and a nonarid soil from a Louisiana forest to various doses of ionizing radiation using a 60Co source. The numbers of surviving bacteria decreased as the dose of gamma radiation to which the soils were exposed increased. Bacterial isolates surviving doses of 30 kGy were recovered from the Sonoran Desert soil, while no isolates were recovered from the nonarid forest soil after exposure to doses greater than 13 kGy. The phylogenetic diversities of the surviving culturable bacteria were compared for the two soils using 16S rRNA gene sequence analysis. In addition to a bacterial population that was more resistant to higher doses of ionizing radiation, the diversity of the isolates was greater in the arid soil. The taxonomic diversity of the isolates recovered was found to decrease as the level of ionizing-radiation exposure increased. Bacterial isolates of the genera Deinococcus, Geodermatophilus, and Hymenobacter were still recovered from the arid soil after exposure to doses of 17 to 30 kGy. The recovery of large numbers of extremely ionizing-radiation-resistant bacteria from an arid soil and not from a nonarid soil provides further ecological support for the hypothesis that the ionizing-radiation resistance phenotype is a consequence of the evolution of other DNA repair systems that protect cells against commonly encountered environmental stressors, such as desiccation. The diverse group of bacterial strains isolated from the arid soil sample included 60 Deinococcus strains, the characterization of which revealed nine novel species of this genus.

[1]  I. Bousfield,et al.  Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov. , 1983 .

[2]  J. Battista,et al.  Against all odds: the survival strategies of Deinococcus radiodurans. , 1997, Annual review of microbiology.

[3]  M. Costa,et al.  Rubrobacter xylanophilus sp. nov., a New Thermophilic Species Isolated from a Thermally Polluted Effluent , 1996 .

[4]  Weber,et al.  Microbial communities of printing paper machines , 1998, Journal of applied microbiology.

[5]  Erwan Corre,et al.  Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation , 2004, Extremophiles.

[6]  P. Cashion,et al.  A rapid method for the base ratio determination of bacterial DNA. , 1977, Analytical biochemistry.

[7]  Hitoshi Ito,et al.  Radiation sensitivities of Acinetobacter strains isolated from clinical sources , 1994, Journal of basic microbiology.

[8]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[9]  O. Kandler,et al.  Chemotaxonomic and Molecular-Genetic Studies of the Genus Thermus: Evidence for a Phylogenetic Relationship of Thermus aquaticus and Thermus ruber to the Genus Deinococcus , 1986 .

[10]  Hiroshi Iizuka,et al.  Taxonomic Studies on a Radio-resistant Pseudomonas :Part XII. Studies on the Microorganisms of Cereal Grain , 1971 .

[11]  R. B. Maxcy,et al.  Isolation of radiation-resistant bacteria without exposure to irradiation , 1979, Applied and environmental microbiology.

[12]  T. Macke,et al.  A phylogenetic definition of the major eubacterial taxa. , 1985, Systematic and applied microbiology.

[13]  E. A. Christensen,et al.  Radiation resistance of clinical Acinetobacter spp.: a need for concern? , 1991, The Journal of hospital infection.

[14]  H. Munro,et al.  Mammalian protein metabolism , 1964 .

[15]  R. Varady,et al.  Arid lands: today and tomorrow , 1990 .

[16]  K. Komagata,et al.  TAXONOMIC STUDIES ON CORYNEFORM BACTERIA , 1970 .

[17]  M. Collins,et al.  Chemotaxonomic characterization of a radiotolerant bacterium, Arthrobacter radiotolerans: Description of Rubrobacter radiotolerans gen. nov., comb. nov , 1988 .

[18]  E. A. Christensen,et al.  Radiation-resistance of micro-organisms from air in clean premises. , 2009, Acta pathologica et microbiologica Scandinavica. Section B, Microbiology.

[19]  M. Collins,et al.  Phylogenetic characterization of a novel radiation-resistant bacterium from irradiated pork: description of Hymenobacter actinosclerus sp. nov. , 2000, International journal of systematic and evolutionary microbiology.

[20]  E. Stackebrandt,et al.  Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. , 2004, Systematic and applied microbiology.

[21]  E. Stackebrandt,et al.  Modestobacter multiseptatus gen. nov., sp. nov., a budding actinomycete from soils of the Asgard Range (Transantarctic Mountains). , 2000, International journal of systematic and evolutionary microbiology.

[22]  F. Rainey,et al.  Characterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus , 1999, Extremophiles.

[23]  W. Whitman,et al.  Precise Measurement of the G+C Content of Deoxyribonucleic Acid by High-Performance Liquid Chromatography , 1989 .

[24]  S. Jeffery Evolution of Protein Molecules , 1979 .

[25]  Qu Liang,et al.  The United Nations Scientific Committee on the Effects of Atomic Radiation , 1965, Nature.

[26]  L. Dijkshoorn,et al.  Pillows, an unexpected source of Acinetobacter. , 1995, The Journal of hospital infection.

[27]  Daniela Billi,et al.  Ionizing-Radiation Resistance in the Desiccation-Tolerant CyanobacteriumChroococcidiopsis , 2000, Applied and Environmental Microbiology.

[28]  F. A. Rainey,et al.  Colored moderately thermophilic bacteria in paper-machine biofilms , 2003, Journal of Industrial Microbiology and Biotechnology.

[29]  K. Yano,et al.  Isolation of Highly Radioresistant Bacterium, Arthrobacter radiotolerans nov. sp. , 1973 .

[30]  J. DiRuggiero,et al.  Repair of extensive ionizing-radiation DNA damage at 95 degrees C in the hyperthermophilic archaeon Pyrococcus furiosus , 1997, Journal of bacteriology.

[31]  V. Mattimore,et al.  Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation , 1996, Journal of bacteriology.

[32]  I. Grant,et al.  A novel radiation‐resistant Deinobacter sp. isolated from irradiated pork , 1989 .

[33]  P. Rublee Manual of Methods for General Bacteriology P. Gerhardt R. G. E. Murray R. N. Costilow E. W. Nester W. A. Wood N. R. Krieg G. B. Phillips , 1984 .

[34]  N. Glansdorff,et al.  A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus , 1978, Archives of Microbiology.

[35]  R. Anderson,et al.  Glucosyl diglyceride lipid structures in Deinococcus radiodurans , 1995, Journal of bacteriology.

[36]  M. Donato,et al.  Polar Lipid and Fatty Acid Composition of Strains of the Genus Thermus , 1990 .

[37]  P. A. Karam,et al.  Calculations of background beta-gamma radiation dose through geologic time. , 1999, Health physics.

[38]  S. Shivaji,et al.  Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. , 2004, International journal of systematic and evolutionary microbiology.

[39]  G. Luedemann Geodermatophilus, a New Genus of the Dermatophilaceae (Actinomycetales) , 1968, Journal of bacteriology.

[40]  B. Rash Analysis of bacterial diversity and biogeography at the Central Arizona-Phoenix Long Term Ecological Research (CAP LTER) site , 2004 .

[41]  R. Sharp,et al.  Properties of Thermus ruber Strains Isolated from Icelandic Hot Springs and DNA:DNA Homology of Thermus ruber and Thermus aquaticus , 1988, Applied and environmental microbiology.

[42]  K. Stetter,et al.  Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C , 1986, Archives of Microbiology.

[43]  F. Rainey,et al.  Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. , 1997, International journal of systematic bacteriology.

[44]  N. S. Davis,et al.  RADIATION-RESISTANT, PIGMENTED COCCUS ISOLATED FROM HADDOCK TISSUE , 1963, Journal of bacteriology.

[45]  Juergen Wiegel,et al.  Kineococcus radiotolerans sp. nov., a radiation-resistant, gram-positive bacterium. , 2002, International journal of systematic and evolutionary microbiology.

[46]  B. Tindall Fully saturated menaqionones in the archaebacterium Pyrobaculum islandicum , 1989 .

[47]  R. Anderson,et al.  Fatty acids are precursors of alkylamines in Deinococcus radiodurans , 1992, Journal of bacteriology.

[48]  James R. Cole,et al.  The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy , 2003, Nucleic Acids Res..

[49]  C. Woese,et al.  The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction. , 1989, Systematic and Applied Microbiology.

[50]  E. Stackebrandt,et al.  Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. , 1997, International journal of systematic bacteriology.

[51]  Kazuhiko Yamada,et al.  TAXONOMIC STUDIES ON CORYNEFORM BACTERIA:IV. MORPHOLOGICAL, CULTURAL, BIOCHEMICAL, AND PHYSIOLOGICAL CHARACTERISTICS , 1972 .

[52]  Hiroshi Iizuka,et al.  Taxonomic Studies on a Radio-resistant Pseudomonas , 1971 .

[53]  T. D. Brock The Genus Thermus , 1978 .

[54]  E. Stackebrandt,et al.  The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. , 1996, International journal of systematic bacteriology.

[55]  M. Costa,et al.  Effect of Growth Temperature on the Lipid Composition of two Strains of Thermus sp. , 1988 .

[56]  Hiroshi Iizuka,et al.  Acinetobacter radioresistens sp. nov. isolated from cotton and soil , 1988 .

[57]  E. A. Christensen,et al.  Radiation-resistant micro-organisms isolated from textiles. , 2009, Acta pathologica et microbiologica Scandinavica. Section B, Microbiology.

[58]  T. Devine,et al.  Fatty Acids, Antibiotic Resistance, and Deoxyribonucleic Acid Homology Groups of Bradyrhizobium japonicum , 1988 .

[59]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[60]  Erwan Corre,et al.  Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. , 2003, International journal of systematic and evolutionary microbiology.

[61]  K. Dose,et al.  Survival in extreme dryness and DNA-single-strand breaks. , 1992, Advances in space research : the official journal of the Committee on Space Research.

[62]  Fred J. Brockman,et al.  Geomicrobiology of High-Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site, Washington State , 2004, Applied and Environmental Microbiology.

[63]  R. Murray,et al.  The Family Deinococcaceae , 1992 .

[64]  Hitoshi Ito Isolation of Micrococcus radiodurans occurring in radurized sawdust culture media of mushroom. , 1977 .

[65]  F. Rainey,et al.  Tepidimonas ignava gen. nov., sp. nov., a new chemolithoheterotrophic and slightly thermophilic member of the beta-Proteobacteria. , 2000, International journal of systematic and evolutionary microbiology.

[66]  D. Scott Ionizing Radiation: Sources and Biological Effects , 1983 .

[67]  H. Iizuka,et al.  Isolation and Identification of Radiation-resistant Cocci Belonging to the Genus Deinococcus from Sewage Sludges and Animal Feeds , 1983 .

[68]  Wolfgang Ludwig,et al.  A Radiation-Resistant Rod-Shaped Bacterium, Deinobacter grandis gen. nov., sp. nov., with Peptidoglycan Containing Ornithine , 1987 .

[69]  N. Lewis Radio-resistant Micrococcus radiophilus sp. nov. isolated from irradiated Bombay duck (Harpodon nehereus) , 1973 .