Dimerization of retroviral genomic RNAs: structural and functional implications.

[1]  Sarma Rh,et al.  Biological Structure and Dynamics. , 1996, Journal of biomolecular structure & dynamics.

[2]  C. Ehresmann,et al.  A loop-loop "kissing" complex is the essential part of the dimer linkage of genomic HIV-1 RNA. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[3]  A. Panganiban,et al.  The human immunodeficiency virus type 1 encapsidation site is a multipartite RNA element composed of functional hairpin structures , 1996, Journal of virology.

[4]  D. Muriaux,et al.  A kissing complex together with a stable dimer is involved in the HIV-1Lai RNA dimerization process in vitro. , 1996, Biochemistry.

[5]  H. Temin,et al.  The recombination rate is not increased when retroviral RNA is missing an encapsidation sequence , 1996, Journal of virology.

[6]  F. Pedersen,et al.  A preferred region for recombinational patch repair in the 5' untranslated region of primer binding site-impaired murine leukemia virus vectors , 1996, Journal of virology.

[7]  M. Laughrea,et al.  Kissing-loop model of HIV-1 genome dimerization: HIV-1 RNAs can assume alternative dimeric forms, and all sequences upstream or downstream of hairpin 248-271 are dispensable for dimer formation. , 1996, Biochemistry.

[8]  J. Domagala,et al.  The in vitro ejection of zinc from human immunodeficiency virus (HIV) type 1 nucleocapsid protein by disulfide benzamides with cellular anti-HIV activity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  É. Cohen,et al.  The human immunodeficiency virus type 1 5' packaging signal structure affects translation but does not function as an internal ribosome entry site structure , 1996, Journal of virology.

[10]  U. Geigenmüller,et al.  Specific binding of human immunodeficiency virus type 1 (HIV-1) Gag-derived proteins to a 5' HIV-1 genomic RNA sequence , 1996, Journal of virology.

[11]  B. Roques,et al.  First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. , 1995, Journal of molecular biology.

[12]  S. Goff,et al.  Retroviral nucleocapsid domains mediate the specific recognition of genomic viral RNAs by chimeric Gag polyproteins during RNA packaging in vivo , 1995, Journal of virology.

[13]  S. Heaphy,et al.  A study of the dimerization of Rous sarcoma virus RNA in vitro and in vivo. , 1995, Virology.

[14]  E. Barklis,et al.  Nucleocapsid protein effects on the specificity of retrovirus RNA encapsidation , 1995, Journal of virology.

[15]  A. Metspalu,et al.  An RNA stem-loop structure involved in the packaging of bovine leukemia virus genomic RNA in vivo. , 1995, Virology.

[16]  D. Muriaux,et al.  A short autocomplementary sequence in the 5' leader region is responsible for dimerization of MoMuLV genomic RNA. , 1995, Biochemistry.

[17]  L. M. Mansky,et al.  The bovine leukemia virus encapsidation signal is discontinuous and extends into the 5' end of the gag gene , 1995, Journal of virology.

[18]  D. Muriaux,et al.  Dimerization of HIV-1Lai RNA at Low Ionic Strength , 1995, The Journal of Biological Chemistry.

[19]  E. Hunter,et al.  Secondary structure model of the Mason-Pfizer monkey virus 5' leader sequence: identification of a structural motif common to a variety of retroviruses , 1995, Journal of virology.

[20]  C. Sassetti,et al.  RNA secondary structure and binding sites for gag gene products in the 5' packaging signal of human immunodeficiency virus type 1 , 1995, Journal of virology.

[21]  W. Fu,et al.  Multiple regions of Harvey sarcoma virus RNA can dimerize in vitro , 1995, Journal of virology.

[22]  O. Donzé,et al.  The first and third uORFs in RSV leader RNA are efficiently translated: implications for translational regulation and viral RNA packaging. , 1995, Nucleic acids research.

[23]  S. Arya,et al.  Human immunodeficiency virus type 2 (HIV-2): packaging signal and associated negative regulatory element. , 1995, Human gene therapy.

[24]  M Laughrea,et al.  A 19-nucleotide sequence upstream of the 5' major splice donor is part of the dimerization domain of human immunodeficiency virus 1 genomic RNA. , 1994, Biochemistry.

[25]  C. Ehresmann,et al.  Mutational analysis of the bipartite dimer linkage structure of human immunodeficiency virus type 1 genomic RNA. , 1994, The Journal of biological chemistry.

[26]  W. Fu,et al.  Characterization of human immunodeficiency virus type 1 dimeric RNA from wild-type and protease-defective virions , 1994, Journal of virology.

[27]  J. Darlix,et al.  Analytical study of rat retrotransposon VL30 RNA dimerization in vitro and packaging in murine leukemia virus. , 1994, Journal of molecular biology.

[28]  S. Goff,et al.  Analysis of binding elements in the human immunodeficiency virus type 1 genomic RNA and nucleocapsid protein. , 1994, Virology.

[29]  C. Ehresmann,et al.  Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[30]  C. Gabus,et al.  A small and efficient dimerization/packaging signal of rat VL30 RNA and its use in murine leukemia virus-VL30-derived vectors for gene transfer , 1994, Journal of virology.

[31]  H. Temin,et al.  A double hairpin structure is necessary for the efficient encapsidation of spleen necrosis virus retroviral RNA. , 1994, The EMBO journal.

[32]  C. Ehresmann,et al.  Dimerization of human immunodeficiency virus type 1 RNA involves sequences located upstream of the splice donor site. , 1994, Nucleic acids research.

[33]  H. Temin,et al.  One retroviral RNA is sufficient for synthesis of viral DNA , 1994, Journal of virology.

[34]  J. Luban,et al.  Specific binding of human immunodeficiency virus type 1 gag polyprotein and nucleocapsid protein to viral RNAs detected by RNA mobility shift assays , 1993, Journal of virology.

[35]  D. Sen,et al.  Mode of dimerization of HIV-1 genomic RNA. , 1993, Biochemistry.

[36]  M. Famulok,et al.  The multimerization state of retroviral RNA is modulated by ammonium ions and affects HIV-1 full-length cDNA synthesis in vitro. , 1993, Nucleic acids research.

[37]  C. Ehresmann,et al.  Conformational analysis of the 5' leader and the gag initiation site of Mo-MuLV RNA and allosteric transitions induced by dimerization. , 1993, Nucleic acids research.

[38]  W. Fu,et al.  Maturation of dimeric viral RNA of Moloney murine leukemia virus , 1993, Journal of virology.

[39]  H. Temin,et al.  Retrovirus variation and reverse transcription: abnormal strand transfers result in retrovirus genetic variation. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[40]  T. Hayashi,et al.  Elucidation of a conserved RNA stem‐loop structure in the packaging signal of human immunodeficiency virus type 1 , 1993, FEBS letters.

[41]  A. Gronenborn,et al.  Identification of a binding site for the human immunodeficiency virus type 1 nucleocapsid protein. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Stanley T. Crooke,et al.  Antisense Research and Applications , 1993 .

[43]  B. Roques,et al.  Basic amino acids flanking the zinc finger of Moloney murine leukemia virus nucleocapsid protein NCp10 are critical for virus infectivity , 1993, Journal of virology.

[44]  A. Panganiban,et al.  Simian immunodeficiency virus RNA is efficiently encapsidated by human immunodeficiency virus type 1 particles , 1993, Journal of virology.

[45]  W. Sundquist,et al.  Evidence for interstrand quadruplex formation in the dimerization of human immunodeficiency virus 1 genomic RNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[46]  T. Yasunaga,et al.  Bovine leukemia virus RNA sequences involved in dimerization and specific gag protein binding: close relation to the packaging sites of avian, murine, and human retroviruses , 1993, Journal of virology.

[47]  B. Berkhout,et al.  Secondary structure of the HIV-2 leader RNA comprising the tRNA-primer binding site. , 1993, Nucleic acids research.

[48]  B. Roques,et al.  Two short basic sequences surrounding the zinc finger of nucleocapsid protein NCp10 of Moloney murine leukemia virus are critical for RNA annealing activity. , 1993, Nucleic acids research.

[49]  C. Ehresmann,et al.  Functional sites in the 5' region of human immunodeficiency virus type 1 RNA form defined structural domains. , 1993, Journal of molecular biology.

[50]  B. Berkhout,et al.  In vitro dimerization of HIV‐2 leader RNA in the absence of PuGGAPuA motifs , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[51]  C. Gabus,et al.  Analytical study of avian reticuloendotheliosis virus dimeric RNA generated in vivo and in vitro , 1992, Journal of virology.

[52]  I. Jones,et al.  Recombinant HIV-1 nucleocapsid protein p15 produced as a fusion protein with glutathione S-transferase in Escherichia coli mediates dimerization and enhances reverse transcription of retroviral RNA. , 1992, Gene.

[53]  G. Jung,et al.  Nucleocapsid protein of HIV‐1 and its Zn2+ complex formation analysis with electrospray mass spectrometry , 1992, FEBS letters.

[54]  O. Donzé,et al.  Role of the open reading frames of Rous sarcoma virus leader RNA in translation and genome packaging. , 1992, The EMBO journal.

[55]  B. Roques,et al.  Viral RNA annealing activities of human immunodeficiency virus type 1 nucleocapsid protein require only peptide domains outside the zinc fingers. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[56]  A. Lever,et al.  The human immunodeficiency virus type 1 packaging signal and major splice donor region have a conserved stable secondary structure , 1992, Journal of virology.

[57]  Y. Iwakura,et al.  RNA packaging signal of human immunodeficiency virus type 1. , 1992, Virology.

[58]  H. Stuhlmann,et al.  Homologous recombination of copackaged retrovirus RNAs during reverse transcription , 1992, Journal of virology.

[59]  J. Maizel,et al.  Novel GACG-hairpin pair motif in the 5' untranslated region of type C retroviruses related to murine leukemia virus , 1992, Journal of virology.

[60]  H. Issaq,et al.  Tightly bound zinc in human immunodeficiency virus type 1, human T-cell leukemia virus type I, and other retroviruses , 1992, Journal of virology.

[61]  C. Ehresmann,et al.  Effect of dimerization on the conformation of the encapsidation Psi domain of Moloney murine leukemia virus RNA. , 1992, Journal of molecular biology.

[62]  R. Petersen,et al.  Phylogenetic and physical analysis of the 5' leader RNA sequences of avian retroviruses. , 1991, Nucleic acids research.

[63]  Y. Ikawa,et al.  Bovine leukemia virus matrix-associated protein MA(p15): further processing and formation of a specific complex with the dimer of the 5'-terminal genomic RNA fragment , 1991, Journal of virology.

[64]  J. Belmont,et al.  RNA secondary structure analysis of the packaging signal for Moloney murine leukemia virus. , 1991, Virology.

[65]  A. C. Prats,et al.  Viral RNA annealing activities of the nucleocapsid protein of Moloney murine leukemia virus are zinc independent , 1991, Nucleic Acids Res..

[66]  J. Luban,et al.  Binding of human immunodeficiency virus type 1 (HIV-1) RNA to recombinant HIV-1 gag polyprotein , 1991, Journal of virology.

[67]  J. Darlix,et al.  Investigation of zinc‐binding affinities of moloney murine leukemia virus nucleocapsid protein and its related zinc finger and modified peptides , 1991, Biopolymers.

[68]  C. Ehresmann,et al.  Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism. , 1991, Nucleic acids research.

[69]  B. Cullen,et al.  Human immunodeficiency virus as a prototypic complex retrovirus , 1991, Journal of virology.

[70]  H. Temin Sex and recombination in retroviruses. , 1991, Trends in genetics : TIG.

[71]  F. Barré-Sinoussi,et al.  Cis elements and trans-acting factors involved in the RNA dimerization of the human immunodeficiency virus HIV-1. , 1990, Journal of molecular biology.

[72]  Wei-Shau Hu,et al.  Retroviral recombination and reverse transcription. , 1990, Science.

[73]  J. Orenstein,et al.  A mutant of human immunodeficiency virus with reduced RNA packaging and abnormal particle morphology , 1990, Journal of virology.

[74]  P. Dupraz,et al.  Point mutations in the proximal Cys-His box of Rous sarcoma virus nucleocapsid protein , 1990, Journal of virology.

[75]  J. Taylor,et al.  Template switching by reverse transcriptase during DNA synthesis , 1990, Journal of virology.

[76]  R. Young,et al.  Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus , 1990, Journal of virology.

[77]  H. Buc,et al.  Reverse transcriptases and genomic variability: the accuracy of DNA replication is enzyme specific and sequence dependent. , 1990, The EMBO journal.

[78]  C. Gabus,et al.  cis elements and trans-acting factors involved in dimer formation of murine leukemia virus RNA , 1990, Journal of virology.

[79]  Eric Bieth,et al.  A study of the dimer formation of Rous sarcoma virus RNA and of its effect on viral protein synthesis in vitro , 1990, Nucleic Acids Res..

[80]  M. Kozak,et al.  Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs , 1989, Molecular and cellular biology.

[81]  J. Sodroski,et al.  Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions , 1989, Journal of virology.

[82]  S. Goff,et al.  Characterization of Moloney murine leukemia virus mutants with single-amino-acid substitutions in the Cys-His box of the nucleocapsid protein , 1989, Journal of virology.

[83]  Franqois,et al.  Genetic recombination of human immunodeficiency virus , 1989, Journal of virology.

[84]  A. Miller,et al.  Identification of a signal in a murine retrovirus that is sufficient for packaging of nonretroviral RNA into virions , 1988, Journal of virology.

[85]  A. Panganiban,et al.  Ordered interstrand and intrastrand DNA transfer during reverse transcription. , 1988, Science.

[86]  C. Gabus,et al.  Small finger protein of avian and murine retroviruses has nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA. , 1988, The EMBO journal.

[87]  Gilcher Ro Human retroviruses and AIDS. , 1988 .

[88]  H. Temin,et al.  Lack of competition results in efficient packaging of heterologous murine retroviral RNAs and reticuloendotheliosis virus encapsidation-minus RNAs by the reticuloendotheliosis virus helper cell line , 1987, Journal of virology.

[89]  M. Bender,et al.  Evidence that the packaging signal of Moloney murine leukemia virus extends into the gag region , 1987, Journal of virology.

[90]  A. Skalka,et al.  A conserved cis-acting sequence in the 5' leader of avian sarcoma virus RNA is required for packaging , 1986, Journal of virology.

[91]  J. Darlix Control of Rous sarcoma virus RNA translation and packaging by the 5' and 3' untranslated sequences. , 1986, Journal of molecular biology.

[92]  M. Kozak Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[93]  S. Covey Amino acid sequence homology in gag region of reverse transcribing elements and the coat protein gene of cauliflower mosaic virus. , 1986, Nucleic acids research.

[94]  D. Baltimore,et al.  Varying the position of a retrovirus packaging sequence results in the encapsidation of both unspliced and spliced RNAs , 1985, Journal of virology.

[95]  J. Darlix,et al.  It is Rous sarcoma virus protein P12 and not P19 that binds tightly to Rous sarcoma virus RNA. , 1984, Journal of molecular biology.

[96]  D. Stacey,et al.  Identification of a sequence likely to be required for avian retroviral packaging. , 1983, Virology.

[97]  S. Goff,et al.  Deletion mutants of Moloney murine leukemia virus which lack glycosylated gag protein are replication competent , 1983, Journal of virology.

[98]  D. Baltimore,et al.  Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus , 1983, Cell.

[99]  W. Gilbert,et al.  Nucleotide sequence of rous sarcoma virus , 1983, Cell.

[100]  H. Temin,et al.  Encapsidation sequences for spleen necrosis virus, an avian retrovirus, are between the 5' long terminal repeat and the start of the gag gene. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[101]  J. Darlix,et al.  Binding sites of viral protein P19 onto Rous sarcoma virus RNA and possible controls of viral functions. , 1982, Journal of molecular biology.

[102]  A. Skalka,et al.  Retroviral DNA H structures: Displacement-assimilation model of recombination , 1982, Cell.

[103]  H. Varmus Form and function of retroviral proviruses. , 1982, Science.

[104]  S. Chattopadhyay,et al.  Metabolism of viral RNA in murine leukemia virus-infected cells; evidence for differential stability of viral message and virion precursor RNA , 1981, Journal of virology.

[105]  T. Copeland,et al.  Primary structure of the low molecular weight nucleic acid-binding proteins of murine leukemia viruses. , 1981, The Journal of biological chemistry.

[106]  K. Murti,et al.  Secondary structural features in the 70S RNAs of Moloney murine leukemia and Rous sarcoma viruses as observed by electron microscopy , 1981, Journal of virology.

[107]  W. S. Hayward,et al.  An avian oncovirus mutant (SE 21Q1b) deficient in genomic RNA: Biological and biochemical characterization , 1978, Cell.

[108]  Y. Chien,et al.  High-molecular-weight RNAs of AKR, NZB, and wild mouse viruses and avian reticuloendotheliosis virus all have similar dimer structures , 1978, Journal of virology.

[109]  W. Bender,et al.  Structure of 50 to 70S RNA from Moloney sarcoma viruses , 1978, Journal of virology.

[110]  W. Bender,et al.  Mapping of poly(A) sequences in the electron microscope reveals unusual structure of type C oncornavirus RNA molecules , 1976, Cell.

[111]  W. Bender,et al.  RD-114, baboon, and woolly monkey viral RNAs compared in size and structure , 1976, Cell.

[112]  C. Stoltzfus,et al.  Structure of B77 sarcoma virus RNA: stabilization of RNA after packaging , 1975, Journal of virology.

[113]  H. Kung,et al.  Structure, subunit composition, and molecular weight of RD-114 RNA , 1975, Journal of virology.

[114]  P. Duesberg,et al.  Structure and molecular weight of the 60-70S RNA and the 30-40S RNA of the Rous sarcoma virus. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[115]  P. Vogt,et al.  Evidence for crossing-over between avian tumor viruses based on analysis of viral RNAs. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[116]  I. K. Berezesky,et al.  Deficiency of 60 to 70S RNA in Murine Leukemia Virus Particles Assembled in Cells Treated with Actinomycin D , 1974, Journal of virology.

[117]  D. Baltimore,et al.  RNA metabolism of murine leukemia virus: detection of virus-specific RNA sequences in infected and uninfected cells and identification of virus-specific messenger RNA. , 1973, Journal of molecular biology.

[118]  M. Stone,et al.  Comparison of immature (rapid harvest) and mature Rous sarcoma virus particles. , 1972, Virology.

[119]  L. Loeb,et al.  RNA-dependent DNA polymerase: presence in normal human cells. , 1971, Biochemical and biophysical research communications.

[120]  S. Mizutani,et al.  Viral RNA-dependent DNA Polymerase: RNA-dependent DNA Polymerase in Virions of Rous Sarcoma Virus , 1970, Nature.

[121]  B. Berkhout Structure and function of the human immunodeficiency virus leader RNA. , 1996, Progress in nucleic acid research and molecular biology.

[122]  C. Ehresmann,et al.  tRNAs as primer of reverse transcriptases. , 1995, Biochimie.

[123]  H. Kim,et al.  A short sequence upstream of the 5' major splice site is important for encapsidation of HIV-1 genomic RNA. , 1994, Virology.

[124]  R. Simons,et al.  Antisense RNA control in bacteria, phages, and plasmids. , 1994, Annual review of microbiology.

[125]  V. Pathak,et al.  13 Role of Reverse Transcriptase in Retroviral Recombination , 1993 .

[126]  J. Darlix,et al.  A murine leukemia virus derived retroviral vector with a rat VL30 packaging psi sequence. , 1992, Bone marrow transplantation.

[127]  L. Arthur,et al.  Roles of Nucleocapsid Cysteine Arrays in Retroviral Assembly and Replication: Possible Mechanisms in RNA Encapsidation , 1991 .

[128]  C. Ehresmann,et al.  An analytical study of the dimerization of in vitro generated RNA of Moloney murine leukemia virus MoMuLV. , 1990, Nucleic acids research.

[129]  Jan van Duin,et al.  Control of prokaryotic translational initiation by mRNA secondary structure , 1990 .

[130]  A. Miller,et al.  Retroviral RNA packaging: sequence requirements and implications. , 1990, Current topics in microbiology and immunology.

[131]  L. Gold,et al.  Posttranscriptional regulatory mechanisms in Escherichia coli. , 1988, Annual review of biochemistry.

[132]  A. Bernstein,et al.  RNA tumor viruses , 1982 .

[133]  D. Luk,et al.  Genetic recombination in avian retroviruses , 1982, Journal of cellular biochemistry.

[134]  J. Coffin Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. , 1979, The Journal of general virology.

[135]  E. Hunter The mechanism for genetic recombination in the avian retroviruses. , 1978, Current topics in microbiology and immunology.