Maxallent: Maximizers of all entropies and uncertainty of uncertainty

a b s t r a c t The entropy maximum approach (Maxent) was developed as a minimization of the subjective uncertainty measured by the Boltzmann–Gibbs–Shannon entropy. Many new entropies have been invented in the second half of the 20th century. Now there exists a rich choice of entropies for fitting needs. This diversity of entropies gave rise to a Maxent ‘‘anarchism’’. The Maxent approach is now the conditional maximization of an appropriate entropy for the evaluation of the probability distribution when our information is partial and incomplete. The rich choice of non-classical entropies causes a new problem: which entropy is better for a given class of applications? We understand entropy as a measure of uncertainty which increases in Markov processes. In this work, we describe the most general ordering of the distribution space, with respect to which all continuous-time Markov processes are monotonic (the Markov order). For inference, this approach results in a set of conditionally ‘‘most random’’ distributions. Each distribution from this set is a maximizer of its own entropy. This ‘‘uncertainty of uncertainty’’ is unavoidable in the analysis of nonequilibrium systems. Surprisingly, the constructive description of this set of maximizers is possible. Two decomposition theorems for Markov processes provide a tool for this description.

[1]  Ludwig Boltzmann,et al.  Further Studies on the Thermal Equilibrium of Gas Molecules , 1966 .

[2]  S. Kalpazidou Cycle representations of Markov processes , 1995 .

[3]  C. D. Levermore,et al.  Moment closure hierarchies for kinetic theories , 1996 .

[4]  Alexander N Gorban,et al.  Quasi-equilibrium closure hierarchies for the Boltzmann equation , 2003, cond-mat/0305599.

[5]  JOEL E. COHEN,et al.  Majorization , Monotonicity of Relative Entropy , and Stochastic Matrices , 2005 .

[6]  Timothy R. C. Read,et al.  Multinomial goodness-of-fit tests , 1984 .

[7]  Alexander N. Gorban Invariant sets for kinetic equations , 1979 .

[8]  Misha Gromov,et al.  In a Search for a Structure, Part 1: On Entropy , 2013 .

[9]  Alexander N Gorban,et al.  Local equivalence of reversible and general Markov kinetics , 2013 .

[10]  Friedrich Hasenöhrl,et al.  Neuer Beweis zweier Sätze über das Wärmegleichgewicht unter mehratomigen Gasmolekülen , 2012 .

[11]  David N. DeJong,et al.  Divergence , 2001 .

[12]  R. Clausius,et al.  Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie , 1865 .

[13]  Andrzej Cichocki,et al.  Families of Alpha- Beta- and Gamma- Divergences: Flexible and Robust Measures of Similarities , 2010, Entropy.

[14]  G. Crooks On Measures of Entropy and Information , 2015 .

[15]  L. Boltzmann Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen , 1970 .

[16]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[17]  J. Gibbs On the equilibrium of heterogeneous substances , 1878, American Journal of Science and Arts.

[18]  Christian Zylka A note on the attainability of states by equalizing processes , 1985 .

[19]  Alexander N Gorban,et al.  Allowed and forbidden regimes of entropy balance in lattice Boltzmann collisions. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[21]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[22]  Mill Johannes G.A. Van,et al.  Transmission Of Information , 1961 .

[23]  L. A. ZADEH,et al.  The concept of a linguistic variable and its application to approximate reasoning - I , 1975, Inf. Sci..

[24]  Pavel Gorban Monotonically equivalent entropies and solution of additivity equation , 2003 .

[25]  Tomaso Aste,et al.  A Search for Structure , 2008 .

[26]  P. Rysselberghe Mathematical foundations of statistical mechanics. , 1949 .

[27]  Ludwig Boltzmann,et al.  Further Studies on the Thermal Equilibrium of Gas Molecules , 2003 .

[28]  Joel E. Cohen,et al.  Relative entropy under mappings by stochastic matrices , 1993 .

[29]  Alexander N Gorban,et al.  Family of additive entropy functions out of thermodynamic limit. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  T. Morimoto Markov Processes and the H -Theorem , 1963 .

[31]  V. Yakovenko,et al.  Colloquium: Statistical mechanics of money, wealth, and income , 2009, 0905.1518.

[32]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[33]  Douglas J. Miller,et al.  Maximum entropy econometrics: robust estimation with limited data , 1996 .

[34]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[35]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[36]  J. Cadzow Maximum Entropy Spectral Analysis , 2006 .

[37]  Alexander N. Gorban,et al.  Entropy: The Markov Ordering Approach , 2010, Entropy.

[38]  I. Csiszár Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems , 1991 .

[39]  G. Vojta,et al.  Extended Irreversible Thermodynamics , 1998 .

[40]  G. Judge,et al.  An Information Theoretic Approach to Econometrics , 2011 .

[41]  S. Gull Bayesian Inductive Inference and Maximum Entropy , 1988 .

[42]  Aleksandr Yakovlevich Khinchin,et al.  Mathematical foundations of information theory , 1959 .

[43]  Muhammad Shahzad,et al.  The Michaelis-Menten-Stueckelberg Theorem , 2010, Entropy.