Television Information Filtering Through Speech Recognition

The problem of information overload can be solved by the application of information filtering to the huge amount of data. Information on radio and television can be filtered using speech recognition of the audio track. A prototype system using closed captions has been developed on top of the INQUERY information access system. The challange of integrating speech recognition and information retrieval into a working system is a big one. The open problems are the selection of a document representation model, the recognition and selection of indexing features for speech retrieval and dealing with the erroneous output of recognition processes.

[1]  W. Bruce Croft,et al.  An evaluation of query processing strategies using the TIPSTER collection , 1993, SIGIR.

[2]  Thomas D. C. Little,et al.  A digital on-demand video service supporting content-based queries , 1993, MULTIMEDIA '93.

[3]  Kazem Taghva,et al.  The effects of noisy data on text retrieval , 1994 .

[4]  A. Syrdal,et al.  Applied speech technology , 1995 .

[5]  Kazem Taghva,et al.  Results of applying probabilistic IR to OCR text , 1994, SIGIR '94.

[6]  Michael E. Lesk What to do when there's too much information , 1989, Hypertext.

[7]  Nicholas J. Belkin,et al.  Information filtering and information retrieval: two sides of the same coin? , 1992, CACM.

[8]  W. Bruce Croft,et al.  Fast Incremental Indexing for Full-Text Information Retrieval , 1994, VLDB.

[9]  W. B. Croft,et al.  An Evaluation of Information Retrieval Accuracy with Simulated OCR Output , 1993 .

[10]  Mark Sanderson,et al.  NRT: News Retrieval Tool , 1991, Electron. Publ..

[11]  James Gettys,et al.  AudioFile: A Network-Transparent System for Distributed Audio Applications , 1993, USENIX Summer.

[12]  Marti A. Hearst Multi-Paragraph Segmentation Expository Text , 1994, ACL.

[13]  John K. Ousterhout,et al.  Tcl and the Tk Toolkit , 1994 .

[14]  Hector Garcia-Molina,et al.  SIFT - a Tool for Wide-Area Information Dissemination , 1995, USENIX.

[15]  Alexander I. Rudnicky,et al.  Survey of current speech technology , 1994, CACM.

[16]  Barry Arons,et al.  Interactively skimming recorded speech , 1994 .

[17]  Francine R. Chen,et al.  The use of emphasis to automatically summarize a spoken discourse , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[18]  Peter Schäuble,et al.  A system for retrieving speech documents , 1992, SIGIR '92.

[19]  Steven J. Plimpton,et al.  Massively parallel methods for engineering and science problems , 1994, CACM.

[20]  Peter Willett Document Retrieval Experiments using Indexing Vocabularies of varying Size. Ii. Hashing, truncation, digram and Trigram Encoding of Index Terms , 1979, J. Documentation.

[21]  W. Bruce Croft,et al.  Evaluation of an inference network-based retrieval model , 1991, TOIS.

[22]  Lynn Wilcox,et al.  Wordspotting for voice editing and audio indexing , 1992, CHI.

[23]  Gerard Salton,et al.  Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer , 1989 .

[24]  W. Bruce Croft,et al.  The INQUERY Retrieval System , 1992, DEXA.

[25]  Pattie Maes,et al.  Agents that reduce work and information overload , 1994, CACM.

[26]  Lynn Wilcox,et al.  HMM-based wordspotting for voice editing and indexing , 1991, EUROSPEECH.

[27]  Robert Erfle Specification of Temporal Constraints in Multimedia Documents using HyTime , 1993, Electron. Publ..

[28]  Thomas D. C. Little,et al.  Video scene decomposition with the motion picture parser , 1994, Electronic Imaging.

[29]  W. Bruce Croft,et al.  Supporting Full-Text Information Retrieval with a Persistent Object Store , 1994, EDBT.