Discovery of transport and reaction properties in distributed systems

In distributed systems, transport phenomena coupled with chemical or metabolic reactions are functions of space. A computational method is outlined to acquire unknown system properties in distributed systems by problem inversion. Physical and chemical properties are estimated simultaneously. The finite-volume discretization method formulated in generalized curvilinear coordinates applied to inversion problem of arbitrarily complex geometries. The direct solution approach of the reacting transport problem through inexpensive acquisition of sensitivity information is presented. An inexact trust region method improves the convergence rate of the large-scale transport and kinetic inversion problem (TKIP). The case studies demonstrate a novel computational approach for quantifying unknown transport properties, as well as reaction or metabolic constants. Solutions to technological challenges is presented in computational fluid mechanics and biotransport using mathematical programming techniques for inversion of distributed systems. © 2006 American Institute of Chemical Engineers AIChE J, 2006

[1]  Robert B. Schnabel,et al.  Computational experience with confidence intervals for nonlinear least squares , 1986 .

[2]  Christodoulos A. Floudas,et al.  Parameter estimation in nonlinear algebraic models via global optimization , 1998 .

[3]  E. Sevick-Muraca,et al.  Truncated Newton's optimization scheme for absorption and fluorescence optical tomography: Part I theory and formulation. , 1999, Optics express.

[4]  Lorenz T. Biegler,et al.  Parameter Estimation for a Polymerization Reactor Model with a Composite-Step Trust-Region NLP Algorithm , 2004 .

[5]  Armistead G Russell,et al.  High-order, direct sensitivity analysis of multidimensional air quality models. , 2003, Environmental science & technology.

[6]  L. Biegler,et al.  Quadratic programming methods for reduced Hessian SQP , 1994 .

[7]  Lorenz T. Biegler,et al.  Dynamic optimization for the core-flooding problem in reservoir engineering , 2005, Comput. Chem. Eng..

[8]  Kevin R. Long,et al.  A variational finite element method for source inversion for convective-diffusive transport , 2003 .

[9]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[10]  Karl Kunisch,et al.  Reduced SQP methods for parameter identification problems , 1992 .

[11]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver , 2005, SIAM J. Sci. Comput..

[12]  Alan C. Evans,et al.  Dopa decarboxylase activity of the living human brain. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[13]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[14]  Andreas A. Linninger,et al.  Towards computer‐aided separation synthesis , 2006 .

[15]  M. Abdou,et al.  Thermal conductivity of a beryllium gas packed bed , 1995 .

[16]  Claire S. Adjiman,et al.  Global optimization of dynamic systems , 2004, Comput. Chem. Eng..

[17]  Mark A. Kramer,et al.  Sensitivity analysis of systems of differential and algebraic equations , 1985 .

[18]  Lorenz T. Biegler,et al.  A tailored optimization strategy for PDE-based design: application to a CVD reactor , 2004, Comput. Chem. Eng..

[19]  Michael Frenklach,et al.  Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method—combustion of methane , 1992 .

[20]  Andreas A. Linninger,et al.  Solving kinetic inversion problems via a physically bounded Gauss - Newton (PGN) method , 2005 .

[21]  M. Huang,et al.  Numerical Procedure to Extract Physical Properties from Raman Scattering Data in a Flow Reactor , 2005 .

[22]  Lorenz T. Biegler,et al.  A Trust Region SQP Algorithm for Equality Constrained Parameter Estimation with Simple Parameter Bounds , 2004, Comput. Optim. Appl..

[23]  W. E. Stewart,et al.  Sensitivity analysis of initial value problems with mixed odes and algebraic equations , 1985 .

[24]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[25]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part II: The Lagrange-Newton Solver and Its Application to Optimal Control of Steady Viscous Flows , 2005, SIAM J. Sci. Comput..

[26]  V. Balakotaiah,et al.  Thermoflow multiplicity in a packed-bed reactor: Conduction and cooling effects , 1989 .

[27]  Luís N. Vicente,et al.  Analysis of Inexact Trust-Region SQP Algorithms , 2002, SIAM J. Optim..

[28]  J. Burns,et al.  A PDE Sensitivity Equation Method for Optimal Aerodynamic Design , 1997 .

[29]  M. Guay,et al.  Optimization and sensitivity analysis for multiresponse parameter estimation in systems of ordinary , 1995 .

[30]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[31]  Impact of 2-D bubble dynamics on the selectivity of fast gas-liquid reactions , 2001 .

[32]  L. Petzold,et al.  Software and algorithms for sensitivity analysis of large-scale differential algebraic systems , 2000 .

[33]  Angelo Lucia,et al.  Multivariable terrain methods , 2003 .

[34]  Ionel M. Navon,et al.  Second-Order Information in Data Assimilation* , 2002 .

[35]  C. Floudas,et al.  Global Optimization for the Parameter Estimation of Differential-Algebraic Systems , 2000 .

[36]  R. Carter On the global convergence of trust region algorithms using inexact gradient information , 1991 .

[37]  L. Biegler,et al.  Optimization strategies for simulated moving bed and PowerFeed processes , 2006 .

[38]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[39]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[40]  Andreas A. Linninger,et al.  Model and Parameter Uncertainty in Distributed Systems , 2006 .

[41]  Paul I. Barton,et al.  Large-Scale Dynamic Optimization Using the Directional Second-Order Adjoint Method , 2005 .

[42]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .