Unlocking the Ice House: Oligocene‐Miocene oxygen isotopes, eustasy, and margin erosion

Oxygen isotope records and glaciomarine sediments indicate at least an intermittent presence of large continental ice sheets on Antarctica since the earliest Oligocene (circa 35 Ma). The growth and decay of ice sheets during the Oligocene to modern “ice house world” caused glacioeustatic sea level changes. The early Eocene was an ice-free “greenhouse world,” but it is not clear if ice sheets existed during the middle to late Eocene “doubt house world.” Benthic foraminiferal δ18O records place limits on the history of glaciation, suggesting the presence of ice sheets at least intermittently since the earliest Oligocene. The best indicator of ice growth is a coeval increase in global benthic and western equatorial planktonic δ18O records. Although planktonic isotope records from the western equatorial regions are limited, subtropical planktonic foraminifera may also record such ice volume changes. It is difficult to apply these established principles to the Cenozoic δ18O record because of the lack of adequate data and problems in stratigraphic correlations that obscure isotope events. We improved Oligocene to Miocene correlations of δ18O records and erected eight oxygen isotope zones (Oi1-Oi2, Mi1-Mi6). Benthic foraminiferal δ18O increases which are associated with the bases of Zones Oil (circa 35.8 Ma), Oi2 (circa 32.5 Ma), and Mil (circa 23.5 Ma) can be linked with δ18O increases in subtropical planktonic foraminifera and with intervals of glacial sedimentation on or near Antarctica. Our new correlations of middle Miocene benthic and western equatorial planktonic δ18O records show remarkable agreement in timing and amplitude. We interpret benthic-planktonic covariance to reflect substantial ice volume increases near the bases of Zones Mi2 (circa 16.1 Ma), Mi3 (circa 13.6 Ma), and possibly Mi5 (circa 11.3 Ma). Possible glacioeustatic lowerings are associated with the δ18O increases which culminated with the bases of Zone Mi4 (circa 12.6 Ma) and Mi6 (circa 9.6 Ma), although low-latitude planktonic δ18O records are required to test this. These inferred glacioeustatic lowerings can be linked to seismic and rock disconformities. For example, we link 12 Oligocene-early late Miocene inferred glacioeustatic lowerings with 12 of the sequence boundaries (= inferred eustatic lowerings) of Haq et al. (1987).

[1]  K. Miller,et al.  Upper Eocene to Oligocene isotope (87Sr/86Sr, δ18O, δ13C) standard section, Deep Sea Drilling Project Site 522 , 1988 .

[2]  N. Pisias,et al.  Stable Isotope and Calcium Carbonate Records from Hydraulic Piston Cored Hole 574A: High-Resolution Records from the Middle Miocene , 1985 .

[3]  H. W. Menard,et al.  Hypsometry of ocean basin provinces , 1966 .

[4]  N. Shackleton,et al.  Paleotemperature History of the Cenozoic and the Initiation of Antarctic Glaciation: Oxygen and Carbon Isotope Analyses in DSDP Sites 277, 279 and 281 , 1975 .

[5]  T. F. Lynch Stratigraphy and Chronology , 1980 .

[6]  R. Fairbanks,et al.  The Marine Oxygen Isotope Record in Pleistocene Coral, Barbados, West Indies , 1978, Quaternary Research.

[7]  B. Tucholke,et al.  Continental Rise and Abyssal Plain Sedimentation in the Southeast Pacific BasinLeg 35 Deep Sea Drilling Project , 1976 .

[8]  T. Takayama Coccolith biostratigraphy of the North Atlantic Ocean, Deep Sea Drilling Project Leg 94. , 1987 .

[9]  J. LaBrecque,et al.  Magnetostratigraphy of Leg 73 Sediments , 1984 .

[10]  Maureen E. Raymo,et al.  Matuyama 41,000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets , 1986 .

[11]  W. Berggren,et al.  Paleogene tropical planktonic foraminiferal biostratigraphy and magnetobiochronology , 1988 .

[12]  R. Matthews,et al.  Cenozoic ice-volume history: Development of a composite oxygen isotope record , 1988 .

[13]  J. D. Hays,et al.  Variations in the Earth ' s Orbit : Pacemaker of the Ice Ages Author ( s ) : , 2022 .

[14]  N. Pisias,et al.  Pacific Miocene carbon isotope stratigraphy using benthic foraminifera , 1983 .

[15]  F. G. Stehli,et al.  Tertiary marine paleotemperatures , 1975 .

[16]  S. F. Percival Late Cretaceous to Pleistocene Calcareous Nannofossils from the South Atlantic, Deep Sea Drilling Project Leg 73 , 1984 .

[17]  A. Mix,et al.  Oxygen-Isotope Analyses and Pleistocene Ice Volumes , 1984, Quaternary Research.

[18]  J. LaBrecque,et al.  Oligocene paleoceanography of the South Atlantic: paleoclimatic implications of sediment accumulation rates and magnetic susceptibility measurements , 1986 .

[19]  H. Oberhaensli,et al.  Isotopic Events at the Eocene/Oligocene Transition. A Review , 1986 .

[20]  T. Crowley,et al.  Isotope-plankton comparisons in a late Quaternary core with a stable temperature history , 1983 .

[21]  N. Opdyke,et al.  Oxygen-Isotope and Paleomagnetic Stratigraphy of Pacific Core V28-239 Late Pliocene to Latest Pleistocene , 1976 .

[22]  J. Mckenzie,et al.  A Paleoclimatic and Paleoceanographic Record of the Paleogene in the Central South Atlantic (Leg 73, Sites 522, 523, and 524) , 1984 .

[23]  L. Keigwin Palaeoceanographic change in the Pacific at the Eocene–Oligocene boundary , 1980, Nature.

[24]  R. Poore,et al.  Eocene to Miocene biostratigraphy of New Jersey core ACGS #4; implications for regional stratigraphy , 1988 .

[25]  L. Stott,et al.  Proteus and Proto-Oceanus: Ancestral Paleogene Oceans as Revealed from Antarctic Stable Isotopic Results; ODP Leg 113 , 1990 .

[26]  S. Savin The History of the Earth's Surface Temperature During the Past 100 Million Years , 1977 .

[27]  J. LaBrecque,et al.  The magnetostratigraphy of Leg 73 sediments , 1983 .

[28]  M. Bender,et al.  Carbon and oxygen isotopic disequilibria of recent deep-sea benthic foraminifera☆ , 1981 .

[29]  S. Savin,et al.  Miocene stable isotope record: a detailed deep pacific ocean study and its paleoclimatic implications. , 1981, Science.

[30]  K. Miller,et al.  Testing Cenozoic Eustatic Changes: The Critical Role of Stratigraphic Resolution , 1987 .

[31]  R. Fairbanks,et al.  Oligocene to Miocene Carbon Isotope Cycles and Abyssal Circulation Changes , 2013 .

[32]  R. Thunell,et al.  Neogene planktonic foraminiferal biogeography and paleoceanography of the Indian Ocean , 1988 .

[33]  C. Murphy,et al.  The depth of the ocean through the Neogene , 1985 .

[34]  Nicholas J Shackleton,et al.  Oxygen Isotope and Palaeomagnetic Stratigraphy of Equatorial Pacific Core V28-238: Oxygen Isotope Temperatures and Ice Volumes on a 105 Year and 106 Year Scale , 1973, Quaternary Research.

[35]  K. Miller,et al.  45. MIOCENE STABLE ISOTOPE STRATIGRAPHY, SITE 747, KERGUELEN PLATEAU1 , 1992 .

[36]  R. Matthews,et al.  The Foraminiferal Isotope Record across the Eocene/Oligocene Boundary at Deep Sea Drilling Project Site 540 , 1984 .

[37]  K. Miller,et al.  Late Paleogene (Eocene to Oligocene) Benthic Foraminiferal Oceanography of the Goban Spur Region, Deep Sea Drilling Project Leg 80 , 1985 .

[38]  W. C. Pitman Relationship between eustacy and stratigraphic sequences of passive margins , 1978 .

[39]  N. Shackleton,et al.  Oxygen isotopic evidence for the development of the psychrosphere 38 Myr ago , 1976, Nature.

[40]  R. Fairbanks,et al.  Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion , 1987 .

[41]  G. Keller,et al.  Middle Oligocene cooling from Equatorial Pacific DSDP Site 77B , 1984 .

[42]  W. Broecker,et al.  The oceanic salt pump: Does it contribute to the glacial‐interglacial difference in atmospheric CO2 content? , 1987 .

[43]  G. Keller,et al.  Miocene benthic foraminiferal isotope records: A synthesis , 1981 .

[44]  S. M. Greenlee,et al.  Recognition and Interpretation of Depositional Sequences and Calculation of Sea-Level Changes From Stratigraphic Data—Offshore New Jersey and Alabama Tertiary , 1988 .

[45]  R. Fairbanks,et al.  Benthic Foraminiferal Carbon Isotopic Records and the Development of Abyssal Circulation in the Eastern North Atlantic , 1987 .

[46]  A. G. Fischer Chapter 7. The Two Phanerozoic Supercycles , 1984 .

[47]  R. Fairbanks,et al.  Reconstructing tropical Atlantic hydrography using planktontic foraminifera and an ocean model , 1990 .

[48]  N. Shackleton,et al.  Stable isotope data and the ontogeny of Paleocene planktonic foraminifera , 1985 .

[49]  M. Aubry Sequence stratigraphy: Eustasy or tectonic imprint? , 1991 .

[50]  D. Bernoulli,et al.  Stratigraphy of the late middle Eocene to early Oligocene in the Bath Cliff section, Barbados, West Indies , 1984 .

[51]  L. Keigwin,et al.  Stable isotopes in late middle Eocene to Oligocene foraminifera , 1986 .

[52]  K. Miller,et al.  Eocene-Oligocene sea-level changes on the New Jersey coastal plain linked to the deep-sea record , 1990 .

[53]  R. Poore,et al.  Tertiary δ18O record and glacio-eustatic sea-level fluctuations , 1980 .

[54]  N. Shackleton,et al.  Oxygen and Carbon Isotope Data from Leg 74 Foraminifers , 1984 .

[55]  R. Fairbanks A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation , 1989, Nature.

[56]  R. Leckie,et al.  Late Paleogene and Early Neogene Foraminifers of Deep Sea Drilling Project Site 270, Ross Sea, Antarctica , 1986 .

[57]  H. Oberhänsli Latest Cretaceous-Early Neogene oxygen and carbon isotopic record at DSDP sites in the Indian Ocean , 1986 .

[58]  W. Berggren,et al.  Oligocene-Miocene biostratigraphy, magnetostratigraphy, and isotopic stratigraphy of the western North Atlantic , 1985 .

[59]  S. Savin,et al.  Miocene deepwater oceanography , 1989 .

[60]  W. Berger,et al.  Miocene oxygen and carbon isotope stratigraphy of the tropical Indian Ocean , 1985 .

[61]  K. Miller,et al.  Oligocene glacio–eustasy and erosion on the margins of the North Atlantic , 1985 .

[62]  I. Mcdougall Potassium-Argon Dating of Glauconite from a Greensand Drilled at Site 270 in the Ross Sea, DSDP Leg 28 , 1977 .

[63]  J. Kennett,et al.  Cenozoic paleoglacial history of Antarctica recorded in Subantarctic deep-sea cores , 1971 .

[64]  B. Clement The magneto-stratigraphy of Leg 94 sediments , 1987 .

[65]  D. P. Elston,et al.  Mid-Cenozoic record of glaciation and sea-level change on the margin of the Victoria Land basin, Antarctica , 1987 .

[66]  B. Haq,et al.  Chronology of Fluctuating Sea Levels Since the Triassic , 1987, Science.

[67]  R. Clayton,et al.  Oxygen isotope fractionation in divalent metal carbonates , 1969 .

[68]  J. Kutzbach,et al.  Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American west , 1989 .

[69]  W. Berggren,et al.  The Eocene/Oligocene Boundary Event in the Deep Sea , 1984, Science.

[70]  K. Miller,et al.  Sea level history. , 1988, Science.

[71]  A. Mix,et al.  Aliasing of the geologic record and the search for long‐period Milankovitch cycles , 1988 .

[72]  J. Kennett Miocene to Early Pliocene Oxygen and Carbon Isotope Stratigraphy in the Southwest Pacific, Deep Sea Drilling Project Leg 90 , 1986 .

[73]  R. Fairbanks,et al.  Evidence for Oligocene–Middle Miocene abyssal circulation changes in the western North Atlantic , 1983, Nature.

[74]  Kenneth G. Miller,et al.  Development of Cenozoic Abyssal Circulation South of the Greenland-Scotland Ridge , 1983 .

[75]  T. Kusky,et al.  Comment and Reply on "Accretion of the Archean Slave province" , 1989 .

[76]  G. Keller,et al.  The evolution of Miocene surface and near-surface marine temperatures: Oxygen isotopic evidence , 1985 .

[77]  R. Poore Middle Eocene through Quaternary Planktonic Foraminifers from the Southern Angola Basin: Deep Sea Drilling Project Leg 73 , 1984 .

[78]  W. Broecker Oxygen Isotope Constraints on Surface Ocean Temperatures , 1986, Quaternary Research.

[79]  C. Poag,et al.  Foraminiferal, lithic, and isotopic changes across four major unconformities at Deep Sea Drilling Project Site 548, Goban Spur: Chapter 14 in Initial reports of the Deep Sea Drilling Project , 1985 .

[80]  G. Brass,et al.  Warm saline bottom water in the ancient ocean , 1982, Nature.

[81]  H. Craig Isotopic Composition and Origin of the Red Sea and Salton Sea Geothermal Brines , 1966, Science.

[82]  N. Shackleton,et al.  The climate of the Eocene ocean , 1981, Journal of the Geological Society.

[83]  P. A. Baker,et al.  87Sr86Sr and 18O16O ratios, interstitial water chemistry and diagenesis in deep-sea carbonate sediments of the Ontong Java Plateau , 1982 .

[84]  J. Kennett Cenozoic evolution of Antarctic glaciation the Circum-Antarctic Ocean and their impact on global paleoceanography , 1977 .

[85]  N. Shackleton The deep-sea sediment record of climate variability , 1982 .