Fixed-node quantum Monte Carlo

Abstract Quantum Monte Carlo methods cannot at present provide exact solutions of the Schrodinger equation for systems with more than a few electrons. But, quantum Monte Carlo calculations can provide very low energy, highly accurate solutions for many systems ranging up to several hundred electrons. These systems include atoms such as Be and Fe, molecules such as H2O, CH4, and HF, and condensed materials such as solid N2 and solid silicon. The quantum Monte Carlo predictions of their energies and structures may not be ‘exact’, but they are the best available. Most of the Monte Carlo calculations for these systems have been carried out using approximately correct fixed nodal hypersurfaces and they have come to be known as ‘fixed-node quantum Monte Carlo’ calculations. In this paper we review these ‘fixed node’ calculations and the accuracies they yield.

[1]  K. Schmidt,et al.  The domain Green’s function method , 1986 .

[2]  P. A. Christiansen,et al.  Relativistic effective potential quantum Monte Carlo simulations for Ne , 1992 .

[3]  S. M. Rothstein,et al.  Estimating the relativistic energy by diffusion quantum Monte Carlo , 1988 .

[4]  W. Goddard,et al.  Ab Initio Calculations on the H2+D2=2HD Four‐Center Exchange Reaction. I. Elements of the Reaction Surface , 1969 .

[5]  David M. Ceperley,et al.  Fixed-node quantum Monte Carlo for molecules , 1982 .

[6]  K. Iguchi,et al.  Quantum Monte Carlo method with the model potential , 1988 .

[7]  D. R. Garmer,et al.  Quantum chemistry by random walk: Application to the potential energy surface for F+H2→HF+H , 1987 .

[8]  Quantum chemistry by random walk: Method of successive corrections , 1979 .

[9]  R. Wyatt,et al.  Multireference configuration‐interaction potential surfaces for the collinear F+H2 reaction , 1992 .

[10]  Stephen R. Langhoff,et al.  Quantum mechanical electronic structure calculations with chemical accuracy , 1995 .

[11]  Mártin,et al.  Cohesive energy of silicon by the Green's-function Monte Carlo method. , 1991, Physical review. B, Condensed matter.

[12]  K. Iguchi,et al.  Quantum Monte Carlo calculations with model potentials: Quadratic accuracy , 1990 .

[13]  R. Pitzer Optimized Molecular Orbital Wavefunctions for Methane Constructed from a Minimum Basis Set , 1967 .

[14]  Jules W. Moskowitz,et al.  Monte Carlo calculations of atoms and molecules , 1986 .

[15]  G. Scuseria A coupled cluster study of the classical barrier height of the F+H2→FH+H reaction , 1991 .

[16]  P. A. Christiansen Relativistic effective potentials in transition metal quantum Monte Carlo simulations , 1991 .

[17]  S. Langhoff,et al.  Theoretical studies of the potential surface for the F+H2→HF+H reaction , 1988 .

[18]  Extrapolation of the time‐step bias in diffusion quantum Monte Carlo by a differential sampling technique , 1989 .

[19]  Natoli,et al.  Crystal structure of atomic hydrogen. , 1993, Physical review letters.

[20]  N. Handy,et al.  Quantum Monte Carlo calculations on Be and LiH , 1985 .

[21]  W. T. Zemke,et al.  Spectroscopy and Structure of the Lithium Hydride Diatomic Molecules and Ions , 1993 .

[22]  James B. Anderson,et al.  A random‐walk simulation of the Schrödinger equation: H+3 , 1975 .

[23]  S. M. Rothstein,et al.  Infinitesimal differential diffusion quantum Monte Carlo: Diatomic molecular properties , 1990 .

[24]  P. Whitlock,et al.  The solution of the Schrödinger equation in imaginary time by Green’s function Monte Carlo. The rigorous sampling of the attractive Coulomb singularity , 1985 .

[25]  S. M. Rothstein,et al.  A method for relativistic variational Monte Carlo calculations , 1992 .

[26]  R. Grimm,et al.  Monte-Carlo solution of Schrödinger's equation☆ , 1971 .

[27]  James B. Anderson,et al.  A quantum Monte Carlo calculation of the ground state energy of the hydrogen molecule , 1991 .

[28]  James B. Anderson Quantum chemistry by random walk: H4 square , 1979 .

[29]  S. M. Rothstein,et al.  Reliable diffusion quantum Monte Carlo , 1988 .

[30]  R. D. Kern,et al.  Dynamic sampling of the deuterium hydride self-exchange behind reflected shock waves , 1971 .

[31]  Iguchi,et al.  Binding energy of positronium chloride: A quantum Monte Carlo calculation. , 1992, Physical review letters.

[32]  Bruce M. Boghosian,et al.  An exact quantum Monte Carlo calculation of the helium-helium intermolecular potential , 1993 .

[33]  S. M. Rothstein,et al.  Optimal spacing and weights in diffusion monte carlo , 1986 .

[34]  Enrico Clementi,et al.  Correlation Energy in Atomic Systems. V. Degeneracy Effects for the Second‐Row Atoms , 1968 .

[35]  H. Schaefer,et al.  An accurate variational wave function for lithium hydride , 1984 .

[36]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[37]  K. Iguchi,et al.  Electron affinity of Cl: A model potential‐quantum Monte Carlo study , 1988 .

[38]  Foulkes,et al.  Pseudopotentials with position-dependent electron masses. , 1990, Physical review. B, Condensed matter.

[39]  M. Caffarel,et al.  Lanczós-Type Algorithm for Quantum Monte Carlo Data , 1991 .

[40]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[41]  C. Umrigar,et al.  A diffusion Monte Carlo algorithm with very small time-step errors , 1993 .

[42]  Peter Reynolds,et al.  Is quantum Monte Carlo competitive? Lithium hydride test case , 1987 .

[43]  W. Kołos,et al.  Accurate Electronic Wave Functions for the H 2 Molecule , 1960 .

[44]  S. M. Rothstein,et al.  Infinitesimal differential diffusion quantum Monte Carlo study of diatomic vibrational frequencies , 1992 .

[45]  S. M. Rothstein,et al.  Infinitesimal differential diffusion quantum Monte Carlo study of CuH spectroscopic constants , 1993 .

[46]  K. Schmidt,et al.  Model Hamiltonians for atomic and molecular systems , 1989 .

[47]  Mitás Quantum Monte Carlo calculation of the Fe atom. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[48]  D. Ceperley,et al.  Novel pseudo-Hamiltonian for quantum Monte Carlo simulations. , 1989, Physical review letters.

[49]  I. Shavitt,et al.  Theoretical Study of the Potential Surface for the H4 System by Double‐Zeta Configuration‐Interaction Calculations , 1969 .

[50]  P. A. Christiansen,et al.  Relativistic effective potentials in quantum Monte Carlo calculations , 1987 .

[51]  D. Ceperley,et al.  Nonlocal pseudopotentials and diffusion Monte Carlo , 1991 .

[52]  James B. Anderson,et al.  Quantum chemistry by random walk: Linear H3 , 1984 .

[53]  A. Burcat,et al.  Further Studies on the Homogeneous Exchange Reaction H2 + D2 , 1967 .

[54]  James B. Anderson,et al.  Quantum chemistry by random walk. H 2P, H+3D3h1A′1, H23Σ+u, H41Σ+g, Be 1S , 1976 .

[55]  D. Ceperley The simulation of quantum systems with random walks: A new algorithm for charged systems , 1983 .

[56]  B. H. Wells The differential Green's function Monte Carlo method. The dipole moment of LiH , 1985 .

[57]  Moroni,et al.  Static response from quantum Monte Carlo calculations. , 1992, Physical review letters.

[58]  Henry F. Schaefer,et al.  Potential Energy Surface Including Electron Correlation for the Chemical F + H2 → FH + H I. Preliminary Surface , 1972 .

[59]  James B. Anderson,et al.  Quantum chemistry by random walk: Higher accuracy , 1980 .

[60]  P. A. Christiansen Core polarization in aluminum , 1990 .

[61]  K. Schmidt,et al.  Quantum simulation of the electronic structure of diatomic molecules , 1992 .

[62]  Wilfried Meyer,et al.  PNO–CI Studies of electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane , 1973 .

[63]  H. Schaefer,et al.  Abinitio calculation of reaction energies. III. Basis set dependence of relative energies on the FH2 and H2CO potential energy surfaces , 1984 .

[64]  Shirley,et al.  Role of forms of exchange and correlation used in generating pseudopotentials. , 1990, Physical Review B (Condensed Matter).

[65]  M. Caffarel,et al.  A Bayesian analysis of Green's function Monte Carlo correlation functions , 1992 .

[66]  Martin,et al.  Quantum Monte Carlo of nitrogen: Atom, dimer, atomic, and molecular solids. , 1994, Physical review letters.

[67]  H. James,et al.  The Heitler-London Repulsive State of Hydrogen , 1936 .

[68]  D. R. Garmer,et al.  Quantum chemistry by random walk: Methane , 1987 .

[69]  P. Reynolds,et al.  Valence quantum Monte Carlo with ab initio effective core potentials , 1987 .

[70]  Stuart M. Rothstein,et al.  Time step error in diffusion Monte Carlo simulations: An empirical study , 1987 .

[71]  K. Iguchi,et al.  Binding energies of positronium fluoride and positronium bromide by the model potential quantum Monte Carlo method , 1993 .

[72]  P. Knowles,et al.  A full-CI study of the energetics of the reaction F + H2 → HF+H , 1991 .

[73]  J. Pople,et al.  Correlation energies for AH n molecules and cations , 1975 .

[74]  P. A. Christiansen Effective potentials and multiconfiguration wave functions in quantum Monte Carlo calculations , 1988 .

[75]  D. Klein,et al.  Nodal hypersurfaces and Anderson’s random‐walk simulation of the Schrödinger equation , 1976 .

[76]  I. Öksüz Basis quantum Monte Carlo theory , 1984 .

[77]  F. B. Brown,et al.  The potential energy surface for the F+H2 reaction as a function of bond angle in the saddle point vicinity , 1986 .

[78]  James B. Anderson,et al.  Quantum chemistry by random walk: Higher accuracy for H+3 , 1992 .

[79]  M. H. Kalos,et al.  Monte Carlo Calculations of the Ground State of Three- and Four-Body Nuclei , 1962 .

[80]  D. Silver,et al.  Reaction paths on the H4 potential energy surface , 1973 .

[81]  Stuart M. Rothstein,et al.  Sampling the exact electron distribution by diffusion quantum Monte Carlo , 1988 .

[82]  D L Diedrich,et al.  An Accurate Quantum Monte Carlo Calculation of the Barrier Height for the Reaction H + H2 → H2 + H , 1992, Science.

[83]  P. A. Christiansen,et al.  Local potential error in quantum Monte Carlo calculations of the Mg ionization potential , 1988 .

[84]  P. Reynolds,et al.  Monte Carlo study of electron correlation functions for small molecules , 1989 .

[85]  James B. Anderson,et al.  Quantum chemistry by random walk: Importance sampling for H+3 , 1981 .

[86]  P. K. Pearson,et al.  Potential Energy Surface Including Electron Correlation for F + H2 → FH + H: Refined Linear Surface , 1972, Science.

[87]  S. Bauer,et al.  Isotope Exchange Rates. III. The Homogeneous Four‐Center Reaction H2+D2 , 1966 .

[88]  S. M. Rothstein,et al.  Optimization of quantum Monte Carlo wavefunctions using analytical derivatives , 1992 .

[89]  F. B. Brown,et al.  An improved calculation of the transition state for the F + H2 reaction , 1985 .

[90]  Shirley,et al.  Core-valence partitioning and quasiparticle pseudopotentials. , 1991, Physical review. B, Condensed matter.

[91]  Bhattacharya,et al.  Exact quantum Monte Carlo calculation of the H-He interaction potential. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[92]  C. Bauschlicher,et al.  Full CI studies of the collinear transition state for the reaction F+H2→HF+H , 1987 .

[93]  Alexander,et al.  Beryllium atom reinvestigated: A comparison between theory and experiment. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[94]  David M. Ceperley,et al.  Quantum Monte Carlo for molecules: Green’s function and nodal release , 1984 .

[95]  M. H. Kalos,et al.  A new look at correlation energy in atomic and molecular systems. II. The application of the Green’s function Monte Carlo method to LiH , 1982 .