Maximum likelihood : an introduction

L'auteur a oui dire que la methode du maximum de vraisemblance est la meilleure methode d'estimation. C'est bien vrai, et pourtant la methode se casse le nez sur des exemples bien simples qui n'avaient pas ete inventes pour le plaisir de montrer que la methode peut etre tres desagreable. On en donne quelques-uns, plus un autre, imite de Bahadur et fabrique expres pour ennuyer les admirateurs du maximum de vraisemblance. Ce fait, on donne une savante liste de principes de construction de bons estimateurs, le principe principal etant qu'il ne faut pas croire aux principes

[1]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  M. Fréchet Sur l'extension de certaines evaluations statistiques au cas de petits echantillons , 1943 .

[3]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[4]  A. Wald Note on the Consistency of the Maximum Likelihood Estimate , 1949 .

[5]  J. Berkson Maximum Likelihood and Minimum x 2 Estimates of the Logistic Function , 1955 .

[6]  J. Kiefer,et al.  CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN THE PRESENCE OF INFINITELY MANY INCIDENTAL PARAMETERS , 1956 .

[7]  R. R. Bahadur Examples of inconsistency of maximum likelihood estimates , 1958 .

[8]  Le Cam,et al.  Locally asymptotically normal families of distributions : certain approximations to families of distributions & thier use in the theory of estimation & testing hypotheses , 1960 .

[9]  J. Berkson,et al.  A Minimax Estimator for the Logistic Function , 1961 .

[10]  Bruce M. Hill,et al.  The Three-Parameter Lognormal Distribution and Bayesian Analysis of a Point-Source Epidemic , 1963 .

[11]  F. Hampel A General Qualitative Definition of Robustness , 1971 .

[12]  Do radioactive decay events follow a random poisson-exponential? , 1975 .

[13]  J. Kalbfleisch Statistical Inference Under Order Restrictions , 1975 .

[14]  B. Efron Defining the Curvature of a Statistical Problem (with Applications to Second Order Efficiency) , 1975 .

[15]  Wolfgang Wefelmeyer,et al.  A third-order optimum property of the maximum likelihood estimator , 1978 .

[16]  J. Berkson MINIMUM CHI-SQUARE, NOT MAXIMUM LIKELIHOOD! , 1980 .

[17]  R. Beran Efficient robust estimates in parametric models , 1981 .

[18]  T. Ferguson An Inconsistent Maximum Likelihood Estimate , 1982 .

[19]  James S. Hodges,et al.  Assessing the accuracy of normal approximations , 1987 .

[20]  E. Mammen Optical local Gaussian approximation of an exponential family , 1987 .

[21]  李幼升,et al.  Ph , 1989 .