Effect of post-processing heat treatment on hydrogen embrittlement susceptibility of API 5L X70 pipeline steel

[1]  J. Szpunar,et al.  Sensitivity of mechanical properties of pipeline steels to microalloying additions and structural characteristics , 2021, Materials Science and Engineering: A.

[2]  J. Szpunar,et al.  Effect of Cold-Rolling on Hydrogen Diffusion and Trapping in X70 Pipeline Steel , 2020 .

[3]  A. Contreras,et al.  Effect of Acicular Ferrite and Bainite in API X70 Steel Obtained After Applying a Heat Treatment on Corrosion and Cracking Behaviour , 2020, Metals and Materials International.

[4]  M. A. Mohtadi-Bonab,et al.  A Comparative Study of the Role of Hydrogen on Degradation of the Mechanical Properties of API X60, X60SS, and X70 Pipeline Steels , 2019, steel research international.

[5]  J. Odqvist,et al.  Early stages of cementite precipitation during tempering of 1C–1Cr martensitic steel , 2019, Journal of Materials Science.

[6]  I. Shabalov,et al.  Steel for gas and oil pipelines resistant to destruction in hydrogen sulphide-containing media , 2019, E3S Web of Conferences.

[7]  J. Szpunar,et al.  Hydrogen induced cracking susceptibility of API 5L X70 pipeline steel in relation to microstructure and crystallographic texture developed after different thermomechanical treatments , 2018, Materials Characterization.

[8]  R. Garg,et al.  Hydrogen induced cracking of pipeline and pressure vessel steels: A review , 2018, Engineering Fracture Mechanics.

[9]  Wenchun Jiang,et al.  Comparison of hydrogen embrittlement susceptibility of three cathodic protected subsea pipeline steels from a point of view of hydrogen permeation , 2018 .

[10]  Zhipeng Wang,et al.  Effect of Annealing Process on the Mechanical Properties of X70 Pipeline Steel , 2018 .

[11]  Lei Zhang,et al.  Investigation of hydrogen concentration and hydrogen damage on API X80 steel surface under cathodic overprotection , 2017 .

[12]  M. Béreš,et al.  Role of crystallographic texture on the improvement of hydrogen-induced crack resistance in API 5L X70 pipeline steel , 2017 .

[13]  Mohammad Masoumi,et al.  Effect of crystallographic orientations on the hydrogen-induced cracking resistance improvement of API 5L X70 pipeline steel under various thermomechanical processing , 2016 .

[14]  Z. Zhang,et al.  Effect of microstructure and crystallography on sulfide stress cracking in API-5CT-C110 casing steel , 2016 .

[15]  J. Trzaska Calculation of Critical Temperatures by Empirical Formulae , 2016 .

[16]  J. Lewandowski,et al.  Effect of tube processing methods on the texture and grain boundary characteristics of 14YWT nanostructured ferritic alloys , 2016 .

[17]  M. A. Mohtadi-Bonab,et al.  Evolution of the microstructure and texture of X70 pipeline steel during cold-rolling and annealing treatments , 2016 .

[18]  M. A. Mohtadi-Bonab,et al.  Texture, local misorientation, grain boundary and recrystallization fraction in pipeline steels related to hydrogen induced cracking , 2015 .

[19]  M. A. Mohtadi-Bonab,et al.  A comparative study of hydrogen induced cracking behavior in API 5L X60 and X70 pipeline steels , 2013 .

[20]  D. Kong,et al.  Stress Corrosion of X80 Pipeline Steel Welded Joints by Slow Strain Test in NACE H2S Solutions , 2013 .

[21]  S. Kim,et al.  Effect of post-weld heat treatment on hydrogen-assisted cracking behavior of high-strength process pipe steel in a sour environment , 2012 .

[22]  J. Szpunar,et al.  Texture and mechanical properties of API X100 steel manufactured under various thermomechanical cycles , 2012 .

[23]  J. H. Espina-Hernandez,et al.  On the role of crystallographic texture in mitigating hydrogen-induced cracking in pipeline steels , 2011 .

[24]  K. Verbeken,et al.  Internal and surface damage of multiphase steels and pure iron after electrochemical hydrogen charging , 2011 .

[25]  Sanyasi Rao,et al.  Failures by SOHIC in Sour Hydrocarbon Service , 2011 .

[26]  S. Kim,et al.  Effect of Post Weld Heat Treatment On the Hydrogen Trapping Behavior of Pressure Vessel Steel , 2011 .

[27]  Jianxun Zhang,et al.  Tempering microstructure and mechanical properties of pipeline steel X80 , 2009 .

[28]  T. Baudin,et al.  Role of microtexture in the interaction and coalescence of hydrogen-induced cracks , 2009 .

[29]  KyooYoung Kim,et al.  Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel , 2008 .

[30]  Yanjing Su,et al.  A Nucleation Mechanism of Hydrogen Blister in Metals and Alloys , 2008 .

[31]  C.R.F. Azevedo,et al.  Failure analysis of a crude oil pipeline , 2007 .

[32]  T. Baudin,et al.  On the influence of crystallographic texture on HIC in low carbon steels , 2013, CP 2013.

[33]  Yongji Weng,et al.  Study on hydrogen absorption of pipeline steel under cathodic charging , 2006 .

[34]  W. Hutchinson,et al.  Transformation Textures in Steels , 2005 .

[35]  T. Baudin,et al.  EBSD study of hydrogen-induced cracking in API-5L-X46 pipeline steel , 2005 .

[36]  H. Asahi,et al.  Conditions of Hydrogen-Induced Corrosion Occurrence of X65 Grade Line Pipe Steels in Sour Environments , 2004 .

[37]  KyooYoung Kim,et al.  Effect of Alloying Elements on the Susceptibility to Sulfide Stress Cracking of Line Pipe Steels , 2004 .

[38]  S. Kumar,et al.  Texture evolution in hot band and annealed hot bands of low alloyed ferritic stainless steel , 2003 .

[39]  Amarnath,et al.  Effect of heat treatments on the hydrogen embrittlement susceptibility of API X-65 grade line-pipe steel , 2003 .

[40]  Teruo Kishi,et al.  Evaluation of Ductile Fracture of Structural Steels by Microvoid Model , 1999 .

[41]  E. Lunarska,et al.  Correlation between critical hydrogen concentration and hydrogen damage of pipeline steel , 1997 .

[42]  S. Chan,et al.  Hydrogen enhanced fatigue crack propagation of bainitic and tempered martensitic steels , 1996 .

[43]  Petros Athanasios Sofronis,et al.  Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture , 1993 .

[44]  M. Luppo,et al.  The influence of microstructure on the trapping and diffusion of hydrogen in a low carbon steel , 1991 .

[45]  T. Namboodhiri Hydrogen embrittlement of metallic materials , 1984 .

[46]  J. D. Embury,et al.  A model of ductile fracture based on the nucleation and growth of voids , 1981 .

[47]  R. A. Oriani,et al.  Effects of hydrogen on the plastic properties of medium-Carbon steels , 1980 .

[48]  A. Thompson,et al.  Permeation measurements of hydrogen trapping in 1045 steel , 1980 .

[49]  R. A. Oriani Hydrogen Embrittlement of Steels , 1978 .