Novel methods for semantic and aesthetic multimedia retrieval

In the internet era, computerized classification and discovery of image properties (objects, scene, emotions generated, aesthetic traits) is of crucial importance for the automatic retrieval of the huge amount of visual data surrounding us. But how can computers see the meaning of an image? Multimedia Information Retrieval (MMIR) is a research field that helps building intelligent systems that automatically recognize the image content and its characteristics. In general, this is achieved by following a chain process: first, low-level features are extracted and pooled into compact image signatures. Then, machine learning techniques are used to build models able to distinguish between different image categories based on such signatures. Such model will be finally used to recognize the properties of a new image. Despite the advances in the field, human vision systems still substantially outperform their computer-based counterparts. In this thesis we therefore design a set of novel contributions for each step of the MMIR chain, aiming at improving the global recognition performances. In our work, we explore techniques from a variety of fields that are not traditionally related with Multimedia Retrieval, and embed them into effective MMIR frameworks. For example, we borrow the concept of image saliency from visual perception, and use it to build low-level features. We employ the Copula theory of economic statistics for feature aggregation. We re-use the notion of graded relevance, popular in web page ranking, for visual retrieval frameworks. We explain in detail our novel solutions and prove their effectiveness for image categorization, video retrieval and aesthetics assessment.

[1]  Marina Bosch,et al.  ImageCLEF, Experimental Evaluation in Visual Information Retrieval , 2010 .

[2]  Allan Hanbury,et al.  Affective image classification using features inspired by psychology and art theory , 2010, ACM Multimedia.

[3]  Brendan T. O'Connor,et al.  Cheap and Fast – But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks , 2008, EMNLP.

[4]  Jaana Kekäläinen,et al.  Binary and graded relevance in IR evaluations--Comparison of the effects on ranking of IR systems , 2005, Inf. Process. Manag..

[5]  Rohini K. Srihari,et al.  Spatial color histograms for content-based image retrieval , 1999, Proceedings 11th International Conference on Tools with Artificial Intelligence.

[6]  James Ze Wang,et al.  On shape and the computability of emotions , 2012, ACM Multimedia.

[7]  Sheng-De Wang,et al.  Fuzzy support vector machines , 2002, IEEE Trans. Neural Networks.

[8]  Eli Shechtman,et al.  In defense of Nearest-Neighbor based image classification , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  James Ze Wang,et al.  Studying Aesthetics in Photographic Images Using a Computational Approach , 2006, ECCV.

[10]  Michael D. Gordon,et al.  Finding Information on the World Wide Web: The Retrieval Effectiveness of Search Engines , 1999, Inf. Process. Manag..

[11]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[12]  Tefko Saracevic Relevance: A review of the literature and a framework for thinking on the notion in information science. Part III: Behavior and effects of relevance , 2007 .

[13]  Krassimira Ivanova,et al.  Color Harmonies and Contrasts Search in Art Image Collections , 2009, 2009 First International Conference on Advances in Multimedia.

[14]  Ali Borji,et al.  Salient Object Detection: A Benchmark , 2015, IEEE Transactions on Image Processing.

[15]  Nuria Oliver,et al.  Towards Category-Based Aesthetic Models of Photographs , 2012, MMM.

[16]  Lei Wang,et al.  Bootstrapping SVM active learning by incorporating unlabelled images for image retrieval , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[17]  Edward Y. Chang,et al.  Multimodal concept-dependent active learning for image retrieval , 2004, MULTIMEDIA '04.

[18]  Wee Kheng Leow,et al.  Fuzzy semantic labeling for image retrieval , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[19]  J. M. Kittross The measurement of meaning , 1959 .

[20]  Jia Li,et al.  Image processing for artist identification , 2008, IEEE Signal Processing Magazine.

[21]  Cor J. Veenman,et al.  Visual Word Ambiguity , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Yihong Gong,et al.  Locality-constrained Linear Coding for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[24]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[25]  Yixin Chen,et al.  Image Categorization by Learning and Reasoning with Regions , 2004, J. Mach. Learn. Res..

[26]  Nenghai Yu,et al.  Annotating personal albums via web mining , 2008, ACM Multimedia.

[27]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Jorma Laaksonen,et al.  Analyzing Emotional Semantics of Abstract Art Using Low-Level Image Features , 2011, IDA.

[29]  Mubarak Shah,et al.  A framework for photo-quality assessment and enhancement based on visual aesthetics , 2010, ACM Multimedia.

[30]  Malcolm Slaney,et al.  Web-Scale Multimedia Analysis: Does Content Matter? , 2011, IEEE MultiMedia.

[31]  Pietro Perona,et al.  On the usefulness of attention for object recognition , 2004 .

[32]  Haim H. Permuter,et al.  A study of Gaussian mixture models of color and texture features for image classification and segmentation , 2006, Pattern Recognit..

[33]  Nasser M. Nasrabadi,et al.  Object recognition by a Hopfield neural network , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[34]  Michael I. Jordan,et al.  Learning Multiscale Representations of Natural Scenes Using Dirichlet Processes , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[35]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[36]  Albert A. Michelson,et al.  Studies in Optics , 1995 .

[37]  Vicente Ordonez,et al.  High level describable attributes for predicting aesthetics and interestingness , 2011, CVPR 2011.

[38]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[39]  Cordelia Schmid,et al.  Vector Quantizing Feature Space with a Regular Lattice , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[40]  Nadia Bianchi-Berthouze,et al.  K-DIME: An Affective Image Filtering System , 2003, IEEE Multim..

[41]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[42]  Jiangtao Cui,et al.  Image retrieval based on color distribution entropy , 2006, Pattern Recognit. Lett..

[43]  Tsuhan Chen,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < , 2022 .

[44]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[45]  A. L. Yarbus,et al.  Eye Movements and Vision , 1967, Springer US.

[46]  Nozha Boujemaa,et al.  The ImageCLEF 2011 plant images classification task , 2011 .

[47]  PoggioTomaso,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007 .

[48]  Martial Hebert,et al.  Semi-Supervised Self-Training of Object Detection Models , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[49]  Serge Beucher,et al.  Watershed, Hierarchical Segmentation and Waterfall Algorithm , 1994, ISMM.

[50]  Hongyuan Zha,et al.  A regression framework for learning ranking functions using relative relevance judgments , 2007, SIGIR.

[51]  Bernard Mérialdo,et al.  Eurecom and ECNU at TRECVID 2010 : The Semantic Indexing Task , 2010, TRECVID.

[52]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[53]  Shih-Fu Chang,et al.  Angular Radial Edge Histogram , 2006 .

[54]  Nasser M. Nasrabadi,et al.  Object recognition by a Hopfield neural network , 1991, IEEE Trans. Syst. Man Cybern..

[55]  Thomas S. Huang,et al.  One-class SVM for learning in image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[56]  Jamshid Shanbehzadeh,et al.  Image retrieval based on shape similarity by edge orientation autocorrelogram , 2003, Pattern Recognit..

[57]  Fazly Salleh Abas,et al.  Classification of painting cracks for content-based analysis , 2003, IS&T/SPIE Electronic Imaging.

[58]  Jitendra Malik,et al.  When is scene identification just texture recognition? , 2004, Vision Research.

[59]  Volker Tresp,et al.  Averaging, maximum penalized likelihood and Bayesian estimation for improving Gaussian mixture probability density estimates , 1998, IEEE Trans. Neural Networks.

[60]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[61]  Yixin Chen,et al.  CLUE: cluster-based retrieval of images by unsupervised learning , 2005, IEEE Transactions on Image Processing.

[62]  James M. Rehg,et al.  Beyond the Euclidean distance: Creating effective visual codebooks using the Histogram Intersection Kernel , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[63]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[64]  Andrew Zisserman,et al.  Scene Classification Via pLSA , 2006, ECCV.

[65]  Pietro Perona,et al.  Graph-Based Visual Saliency , 2006, NIPS.

[66]  Bo Zhang,et al.  Support vector machine learning for image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[67]  Lucy Vanderwende,et al.  Enhancing Single-Document Summarization by Combining RankNet and Third-Party Sources , 2007, EMNLP.

[68]  Ramin Zabih,et al.  Comparing images using color coherence vectors , 1997, MULTIMEDIA '96.

[69]  Sabine Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[70]  Bernt Schiele,et al.  Robust Object Detection with Interleaved Categorization and Segmentation , 2008, International Journal of Computer Vision.

[71]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[72]  Linh Viet Tran,et al.  Efficient Image Retrieval with Statistical Color Descriptors , 2003 .

[73]  Michael Freeman,et al.  The Photographer's Eye: Composition and Design for Better Digital Photos , 2007 .

[74]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[75]  Sue Harding,et al.  Auditory Gist Perception: An Alternative to Attentional Selection of Auditory Streams? , 2008, WAPCV.

[76]  Tefko Saracevic,et al.  Relevance : A Review of the Literature and a Framework for Thinking on the Notion in Information Science . Part III : Behavior and Effects of Relevance , 1976 .

[77]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[78]  Alan Hanjalic,et al.  Affective video content representation and modeling , 2005, IEEE Transactions on Multimedia.

[79]  Frédo Durand,et al.  Learning to predict where humans look , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[80]  Sheng-De Wang,et al.  Training algorithms for fuzzy support vector machines with noisy data , 2003, 2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718).

[81]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[82]  Subhransu Maji,et al.  Classification using intersection kernel support vector machines is efficient , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[83]  HongJiang Zhang,et al.  Contrast-based image attention analysis by using fuzzy growing , 2003, MULTIMEDIA '03.

[84]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[85]  David A. Landgrebe,et al.  A survey of decision tree classifier methodology , 1991, IEEE Trans. Syst. Man Cybern..

[86]  N. Sebe,et al.  Color indexing using wavelet-based salient points , 2000, 2000 Proceedings Workshop on Content-based Access of Image and Video Libraries.

[87]  James Ze Wang,et al.  IMAGINATION: a robust image-based CAPTCHA generation system , 2005, ACM Multimedia.

[88]  John Shawe-Taylor,et al.  Improving "bag-of-keypoints" image categorisation: Generative Models and PDF-Kernels , 2005 .

[89]  Markus A. Stricker,et al.  Color indexing with weak spatial constraints , 1996, Electronic Imaging.

[90]  Yoram Singer,et al.  An Efficient Boosting Algorithm for Combining Preferences by , 2013 .

[91]  Sunil Arya,et al.  Algorithms for fast vector quantization , 1993, [Proceedings] DCC `93: Data Compression Conference.

[92]  Jaime Teevan,et al.  Implicit feedback for inferring user preference: a bibliography , 2003, SIGF.

[93]  Ying Liu,et al.  Region-based image retrieval with high-level semantics using decision tree learning , 2008, Pattern Recognit..

[94]  Bernard Mérialdo,et al.  Direct modeling of image keypoints distribution through copula-based image signatures , 2013, ICMR '13.

[95]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[96]  Douglas E. Sturim,et al.  Support vector machines using GMM supervectors for speaker verification , 2006, IEEE Signal Processing Letters.

[97]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[98]  Horst Bischof,et al.  Semi-supervised boosting using visual similarity learning , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[99]  D. Gabor,et al.  Theory of communication. Part 1: The analysis of information , 1946 .

[100]  Bernard Mérialdo,et al.  Exploring two spaces with one feature: kernelized multidimensional modeling of visual alphabets , 2012, ICMR '12.

[101]  Bernard Mérialdo,et al.  Saliency-aware color moments features for image categorization and retrieval , 2011, 2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI).

[102]  Sebastian Nowozin,et al.  Let the kernel figure it out; Principled learning of pre-processing for kernel classifiers , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[103]  Cristian Sminchisescu,et al.  Efficient Match Kernel between Sets of Features for Visual Recognition , 2009, NIPS.

[104]  Eero Sormunen,et al.  Liberal relevance criteria of TREC -: counting on negligible documents? , 2002, SIGIR '02.

[105]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[106]  Bernard Mérialdo,et al.  A Multimedia Retrieval Framework Based on Automatic Graded Relevance Judgments , 2012, MMM.

[107]  Koen Vanhoof,et al.  Features for Art Painting Classification Based on Vector Quantization of MPEG-7 Descriptors , 2010, ICDEM.

[108]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[109]  Antonio Criminisi,et al.  Object categorization by learned universal visual dictionary , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[110]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[111]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[112]  David Wettergreen,et al.  Aesthetic Image Classification for Autonomous Agents , 2010, 2010 20th International Conference on Pattern Recognition.

[113]  Bernard Mérialdo,et al.  Saliency moments for image categorization , 2011, ICMR.

[114]  Joachim M. Buhmann,et al.  Distortion Invariant Object Recognition in the Dynamic Link Architecture , 1993, IEEE Trans. Computers.

[115]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[116]  Krista A. Ehinger,et al.  SUN database: Large-scale scene recognition from abbey to zoo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[117]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[118]  Shengming Jiang,et al.  Image Retrieval by Emotional Semantics: A Study of Emotional Space and Feature Extraction , 2006, SMC.

[119]  Yihong Gong,et al.  Nonlinear Learning using Local Coordinate Coding , 2009, NIPS.

[120]  Da-Wen Sun,et al.  Learning techniques used in computer vision for food quality evaluation: a review , 2006 .

[121]  Wei-Ning Wang,et al.  Image emotional semantic query based on color semantic description , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[122]  Mateu Sbert,et al.  Conceptualizing Birkhoff's Aesthetic Measure Using Shannon Entropy and Kolmogorov Complexity , 2007, CAe.

[123]  Zhi-Hua Zhou,et al.  Exploiting Unlabeled Data in Content-Based Image Retrieval , 2004, ECML.

[124]  Pierre Soille,et al.  Mathematical Morphology and Its Applications to Image Processing , 1994, Computational Imaging and Vision.

[125]  Cordelia Schmid,et al.  Indexing Based on Scale Invariant Interest Points , 2001, ICCV.

[126]  Jean Ponce,et al.  Learning mid-level features for recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[127]  A. Mack,et al.  Gist perception requires attention , 2012 .

[128]  Thomas Martin Deserno,et al.  Overview of the ImageCLEFmed 2007 Medical Retrieval and Medical Annotation Tasks , 2007, CLEF.

[129]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[130]  Herbert A. Sturges,et al.  The Choice of a Class Interval , 1926 .

[131]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .

[132]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[133]  A. Oliva,et al.  Diagnostic Colors Mediate Scene Recognition , 2000, Cognitive Psychology.

[134]  Frédéric Jurie,et al.  Learning Saliency Maps for Object Categorization , 2006 .

[135]  Barbara Caputo,et al.  Visual Servoing to Help Camera Operators Track Better , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[136]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[137]  Antonio Torralba,et al.  Recognizing indoor scenes , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[138]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[139]  David Hawking,et al.  Overview of the TREC-9 Web Track , 2000, TREC.

[140]  Frédéric Jurie,et al.  Fast Discriminative Visual Codebooks using Randomized Clustering Forests , 2006, NIPS.

[141]  Lucas Paletta,et al.  Attention in Cognitive Systems. Theories and Systems from an Interdisciplinary Viewpoint , 2008, Lecture Notes in Computer Science.

[142]  Antonio Torralba,et al.  Building the gist of a scene: the role of global image features in recognition. , 2006, Progress in brain research.

[143]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[144]  Shih-Fu Chang,et al.  VisualSEEk: a fully automated content-based image query system , 1997, MULTIMEDIA '96.

[145]  Bernard Mérialdo,et al.  Marginal-based visual alphabets for local image descriptors aggregation , 2011, MM '11.

[146]  Laurent Itti,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Rapid Biologically-inspired Scene Classification Using Features Shared with Visual Attention , 2022 .

[147]  Cordelia Schmid,et al.  Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search , 2008, ECCV.

[148]  Koichi Shinoda,et al.  High-Level Feature Extraction Using SIFT GMMs and Audio Models , 2010, 2010 20th International Conference on Pattern Recognition.

[149]  Prashant Parikh A Theory of Communication , 2010 .

[150]  Qi Tian,et al.  Incorporate support vector machines to content-based image retrieval with relevance feedback , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[151]  Shiri Gordon,et al.  Applying the information bottleneck principle to unsupervised clustering of discrete and continuous image representations , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[152]  Pere Obrador,et al.  The role of image composition in image aesthetics , 2010, 2010 IEEE International Conference on Image Processing.

[153]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[154]  Krishna P. Gummadi,et al.  A measurement-driven analysis of information propagation in the flickr social network , 2009, WWW '09.

[155]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[156]  Jan C. van Gemert,et al.  Exploiting photographic style for category-level image classification by generalizing the spatial pyramid , 2011, ICMR.

[157]  Antonio Torralba,et al.  Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. , 2006, Psychological review.

[158]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[159]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[160]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[161]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[162]  Nicolas Le Roux,et al.  Ask the locals: Multi-way local pooling for image recognition , 2011, 2011 International Conference on Computer Vision.

[163]  Concetto Spampinato,et al.  Multimedia analysis for ecological data , 2012, ACM Multimedia.

[164]  Luc Van Gool,et al.  Wide Baseline Stereo Matching based on Local, Affinely Invariant Regions , 2000, BMVC.

[165]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[166]  Martin Szummer,et al.  Indoor-outdoor image classification , 1998, Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database.

[167]  Liqing Zhang,et al.  Saliency Detection: A Spectral Residual Approach , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[168]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[169]  D. Navon Forest before trees: The precedence of global features in visual perception , 1977, Cognitive Psychology.

[170]  David Haussler,et al.  Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.

[171]  Paul Over,et al.  Evaluation campaigns and TRECVid , 2006, MIR '06.

[172]  A. Oliva,et al.  From Blobs to Boundary Edges: Evidence for Time- and Spatial-Scale-Dependent Scene Recognition , 1994 .

[173]  Changle Zhou,et al.  Content-Based Affective Image Classification and Retrieval Using Support Vector Machines , 2005, ACII.

[174]  J. Henderson,et al.  The influence of color on the perception of scene gist. , 2008, Journal of experimental psychology. Human perception and performance.

[175]  Wei-Ying Ma,et al.  IGroup: web image search results clustering , 2006, MM '06.

[176]  C. Won,et al.  Efficient Use of MPEG‐7 Edge Histogram Descriptor , 2002 .

[177]  Cordelia Schmid,et al.  Aggregating Local Image Descriptors into Compact Codes , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[178]  Deepu Rajan,et al.  Random walks on graphs to model saliency in images , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[179]  John C. Mitchell,et al.  Text-based CAPTCHA strengths and weaknesses , 2011, CCS '11.

[180]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.

[181]  M. Tarr,et al.  Visual Object Recognition , 1996, ISTCS.

[182]  D. Ruderman The statistics of natural images , 1994 .

[183]  Miroslav Goljan,et al.  Digital camera identification from sensor pattern noise , 2006, IEEE Transactions on Information Forensics and Security.

[184]  Ximena Olivares,et al.  Visual diversification of image search results , 2009, WWW '09.

[185]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[186]  Jürgen Schmidhuber,et al.  Driven by Compression Progress: A Simple Principle Explains Essential Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Attention, Curiosity, Creativity, Art, Science, Music, Jokes , 2008, ABiALS.

[187]  Andrew Zisserman,et al.  Image Classification using Random Forests and Ferns , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[188]  Guillermo Sapiro,et al.  Supervised Dictionary Learning , 2008, NIPS.

[189]  Jing Huang,et al.  Image indexing using color correlograms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[190]  James J. Little,et al.  Informed visual search: Combining attention and object recognition , 2008, 2008 IEEE International Conference on Robotics and Automation.

[191]  Svetlana Lazebnik,et al.  Supervised Learning of Quantizer Codebooks by Information Loss Minimization , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[192]  Tao Qin,et al.  Web image clustering by consistent utilization of visual features and surrounding texts , 2005, MULTIMEDIA '05.

[193]  Miguel Á. Carreira-Perpiñán,et al.  Multiscale conditional random fields for image labeling , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[194]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[195]  Cordelia Schmid,et al.  Aggregating local descriptors into a compact image representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[196]  Kai-Kuang Ma,et al.  Fuzzy color histogram and its use in color image retrieval , 2002, IEEE Trans. Image Process..

[197]  Alberto Del Bimbo,et al.  Semantics in Visual Information Retrieval , 1999, IEEE Multim..

[198]  Kok-Lim Low,et al.  Saliency-enhanced image aesthetics class prediction , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[199]  Bao-Liang Lu,et al.  Gender Classification Based on Support Vector Machine with Automatic Confidence , 2009, ICONIP.

[200]  Graeme G. Wilkinson,et al.  Results and implications of a study of fifteen years of satellite image classification experiments , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[201]  Stéphane Ayache,et al.  TRECVID 2007: Collaborative Annotation using Active Learning , 2007, TRECVID.

[202]  Miriam Redi,et al.  EURECOM at TrecVid 2011: The Light Semantic Indexing Task , 2011, TRECVID.