InSb1−xNx/InSb/GaAs alloys by thermal annealing for midinfrared photodetection

InSb1−xNx alloys on GaAs substrates are prepared by molecular beam epitaxy and in situ thermal annealed at different temperatures in Sb ambience. X-ray diffraction indicates that the amount of N incorporation in Sb lattice sites is dependent on the annealing temperature. Low annealing temperature increases the N incorporation and extends the absorption to long wavelength infrared range. InSb1−xNx photoconductors operating near 10 μm at 77 K are realized. The measured wavelengths are in good agreement with band gaps of the alloys calculated using a two-level band anticrossing model with Varshni relation. This work will benefit those working on midinfrared photodetectors.

[1]  S. Yoon,et al.  Properties of InSbN grown on GaAs by radio frequency nitrogen plasma-assisted molecular beam epitaxy , 2009 .

[2]  J. Merz,et al.  Influence of N interstitials on the electronic properties of GaAsN alloys , 2009 .

[3]  A. Holmes,et al.  Rapid thermal annealing effects on the photoluminescence properties of molecular beam epitaxy-grown GaIn(N)As quantum wells with Ga(N)As spacers and barriers , 2004 .

[4]  Kouji Nakahara,et al.  GaInNAs: a novel material for long-wavelength semiconductor lasers , 1997 .

[5]  Carl R. Pidgeon,et al.  InSb1-xNx growth and devices , 2003 .

[6]  S. Yoon,et al.  Growth temperature and plasma power effects on N incorporation in InSbN grown by molecular beam epitaxy , 2009 .

[7]  M. Henini Dilute nitride semiconductors , 2005 .

[9]  D. Boning,et al.  Effects of nitrogen incorporation in InSb1−xNx grown using radio frequency plasma-assisted molecular beam epitaxy , 2007 .

[10]  Gerald B. Stringfellow,et al.  Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy , 1990 .

[11]  A. Ricard,et al.  Influence of radio frequency plasma cell conditions on the incorporation of nitrogen into GaAsN and GaInAsN , 2004 .

[12]  I. Mahboob,et al.  Negative band gaps in dilute InNxSb1-x alloys. , 2004, Physical review letters.

[13]  David Walker,et al.  Growth and characterisation of high quality MBE grown InNx Sb1–x , 2007 .

[14]  T. Kitatani,et al.  Infrared Absorption Spectrum of GaInNAs , 2003 .

[15]  I. Bradley,et al.  Band anticrossing in dilute InNxSb1−x , 2002 .

[16]  David Walker,et al.  Growth and characterisation of dilute antimonide nitride materials for long-wavelength applications , 2009, Microelectron. J..

[17]  A. Krier,et al.  Molecular beam epitaxial growth of InAsN:Sb for midinfrared Optoelectronics , 2008 .

[18]  E. O’Reilly,et al.  Theory of Conduction Band Structure of InNxSb1-x and GaNxSb1-x Dilute Nitride Alloys , 2008 .

[19]  A. Wee,et al.  InSbN based p-n junctions for infrared photodetection , 2010 .

[20]  T. Ashley,et al.  Effect of hydrogen in dilute InNxSb1-x alloys grown by molecular beam epitaxy , 2003 .

[21]  S. Yoon,et al.  Effect of thermal annealing on properties of InSbN grown by molecular beam epitaxy , 2010 .

[22]  Carl R. Pidgeon,et al.  Auger recombination in long-wavelength infrared InNxSb1−x alloys , 2001 .

[23]  M. Kudo,et al.  Transition of Infrared Absorption Peaks in Thermally Annealed GaInNAs , 2001 .