Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells.

Solid oxide fuel cells (SOFC) are under intensive investigation since the 1980's as these devices open the way for ecologically clean direct conversion of the chemical energy into electricity, avoiding the efficiency limitation by Carnot's cycle for thermochemical conversion. However, the practical development of SOFC faces a number of unresolved fundamental problems, in particular concerning the kinetics of the electrode reactions, especially oxygen reduction reaction. We review recent experimental and theoretical achievements in the current understanding of the cathode performance by exploring and comparing mostly three materials: (La,Sr)MnO3 (LSM), (La,Sr)(Co,Fe)O3 (LSCF) and (Ba,Sr)(Co,Fe)O3 (BSCF). Special attention is paid to a critical evaluation of advantages and disadvantages of BSCF, which shows the best cathode kinetics known so far for oxides. We demonstrate that it is the combined experimental and theoretical analysis of all major elementary steps of the oxygen reduction reaction which allows us to predict the rate determining steps for a given material under specific operational conditions and thus control and improve SOFC performance.

[1]  F. Prinz,et al.  Nanoscale membrane electrolyte array for solid oxide fuel cells , 2012 .

[2]  Wang,et al.  Tetragonal domain structure and magnetoresistance of La1-xSrxCoO3. , 1996, Physical review. B, Condensed matter.

[3]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[4]  Zongping Shao,et al.  High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells , 2010 .

[5]  J. Maier,et al.  First-Principles Modeling of Oxygen Interaction with SrTiO3(001) Surface: Comparative Density-Functional LCAO and Plane-Wave Study , 2010, 1005.4833.

[6]  H. Bouwmeester,et al.  Ion and mixed conducting oxides as catalysts , 1992 .

[7]  J. Mizusaki,et al.  Thermodynamic quantities and defect equilibrium in the perovskite-type oxide solid solution La1-xSrxFeO3-delta , 1987 .

[8]  Y. Orikasa,et al.  Catalytic activity enhancement for oxygen reduction on epitaxial perovskite thin films for solid-oxide fuel cells. , 2010, Angewandte Chemie.

[9]  Meilin Liu,et al.  Prediction of O2 Dissociation Kinetics on LaMnO3-Based Cathode Materials for Solid Oxide Fuel Cells , 2009 .

[10]  R. Ward,et al.  The Preparation of a Barium Cobalt Oxide and other Phases with Similar Structures1,2 , 1957 .

[11]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[12]  K. Efimov,et al.  Transmission Electron Microscopy Study of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Perovskite Decomposition at Intermediate Temperatures , 2010 .

[13]  Zongping Shao,et al.  Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane , 2000 .

[14]  R. Kriegel,et al.  Oxygen stoichiometry and expansion behavior of Ba0.5Sr0.5Co0.8Fe0.2O3 − δ , 2010 .

[15]  V. Utgikar,et al.  Structural Stability and Catalytic Activity of Lanthanum-Based Perovskites , 2011 .

[16]  R. Evarestov,et al.  DFT plane wave calculations of the atomic and electronic structure of LaMnO3 (001) surface. , 2005, Physical chemistry chemical physics : PCCP.

[17]  J. Purans,et al.  Jahn-Teller distortion around Fe{sup 4+} in Sr(Fe{sub x}Ti{sub 1-x})O{sub 3-{delta}} from x-ray absorption spectroscopy, x-ray diffraction, and vibrational spectroscopy , 2007 .

[18]  T. Jacob,et al.  Electronic and magnetic structure of La0.875Sr0.125MnO3 calculated by means of hybrid density-functional theory , 2007 .

[19]  Lu Yan,et al.  Substrate and thickness effects on the oxygen surface exchange of La(0.7)Sr(0.3)MnO3 thin films. , 2012, ACS applied materials & interfaces.

[20]  Mu-Chun Wang,et al.  Visible Light Source Disturbing the Source/Drain Current of CLC Poly-Si n-TFT Device , 2008 .

[21]  Harumi Yokokawa,et al.  Thermodynamic considerations on Cr poisoning in SOFC cathodes , 2006 .

[22]  L. Gauckler,et al.  Phase relations in the Ba–Sr–Co–Fe–O system at 1273 K in air , 2009 .

[23]  H. Nabielek,et al.  Solid Oxide Fuel Cell Development at Forschungszentrum Juelich , 2007, ECS Transactions.

[24]  E. Cordfunke,et al.  The Defect Chemistry of LaMnO3+δ: 5. Thermodynamics , 1994 .

[25]  J. Maier,et al.  First-principles modelling of complex perovskite (Ba1-xSrx)(Co1-yFey)O3-δ for solid oxide fuel cell and gas separation membrane applications , 2010 .

[26]  N. Sakai,et al.  Enhancement of Oxygen Surface Exchange at the Hetero-interface of ( La , Sr ) CoO3 / ( La , Sr ) 2CoO4 with PLD-Layered Films , 2008 .

[27]  Craig A. J. Fisher,et al.  Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. , 2010, Chemical Society reviews.

[28]  J. Shimoyama,et al.  Electrical Conductivity, Defect Equilibrium and Oxygen Vacancy Diffusion Coefficient of La1 − x Ca x AlO3 − δ Single Crystals , 1993 .

[29]  M. Islam,et al.  Atomic-Scale Insight into LaFeO3 Perovskite: Defect Nanoclusters and Ion Migration , 2008 .

[30]  M. Döbeli,et al.  Structure determination of monolayer-by-monolayer grown La1-x Srx MnO3 thin films and the onset of magnetoresistance , 2008 .

[31]  G. Aeppli,et al.  Imaging oxygen defects and their motion at a manganite surface. , 2011, Nature communications.

[32]  F. Prado,et al.  Phase equilibrium and electrical conductivity of SrCo0.8Fe0.2O3−δ , 2004 .

[33]  Stuart B. Adler,et al.  Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes , 1996 .

[34]  N. Orlovskaya,et al.  Structural characterization combined with the first principles simulations of barium/strontium cobaltite/ferrite as promising material for solid oxide fuel cells cathodes and high-temperature oxygen permeation membranes. , 2009, ACS applied materials & interfaces.

[35]  B. Boukamp,et al.  A novel pulse isotopic exchange technique for rapid determination of the oxygen surface exchange rate of oxide ion conductors. , 2009, Physical chemistry chemical physics : PCCP.

[36]  R. Brook,et al.  A study of oxygen ion conductivity in doped non-stoichiometric oxides , 1982 .

[37]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[38]  A. Kucernak,et al.  Thermodynamic stability of LaMnO3 and its competing oxides: A hybrid density functional study of an alkaline fuel cell catalyst , 2011 .

[39]  A. Feldhoff,et al.  Local Charge Disproportion in a High-Performance Perovskite , 2009 .

[40]  D. Leonard,et al.  Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells , 2010 .

[41]  J. Hertz,et al.  Measurability of the diffusion and surface exchange coefficients using isotope exchange with thin film and traditional samples , 2012 .

[42]  A. Jacobson,et al.  A thermogravimetric study of the phase diagram of strontium cobalt iron oxide, SrCo0.8Fe0.2O3 − δ , 1996 .

[43]  D. Morgan,et al.  Prediction of solid oxide fuel cell cathode activity with first-principles descriptors , 2011 .

[44]  J. Maier,et al.  Adsorption of atomic and molecular oxygen on the LaMnO3(001) surface: ab initio supercell calculations and thermodynamics. , 2008, Physical chemistry chemical physics : PCCP.

[45]  J. Gale,et al.  Oxygen ion migration in orthorhombic LaMnO3−δ , 2003 .

[46]  N. Marks,et al.  Defects and threshold displacement energies in SrTiO3 perovskite using atomistic computer simulations , 2007 .

[47]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[48]  B. Yildiz,et al.  Enhanced one dimensional mobility of oxygen on strained LaCoO3(001) surface , 2011 .

[49]  L. Gauckler,et al.  Oxidation states of Co and Fe in Ba(1-x)Sr(x)Co(1-y)Fe(y)O(3-delta) (x, y = 0.2-0.8) and oxygen desorption in the temperature range 300-1273 K. , 2009, Physical chemistry chemical physics : PCCP.

[50]  J. Maier,et al.  Oxygen exchange kinetics on solid oxide fuel cell cathode materials—general trends and their mechanistic interpretation , 2012 .

[51]  A. Wedig,et al.  Fast oxygen exchange kinetics of pore-free Bi(1-x)Sr(x)FeO(3-δ) thin films. , 2011, Physical chemistry chemical physics : PCCP.

[52]  J. Maier,et al.  Partial conductivities in SrTiO3 : bulk polarization experiments, oxygen concentration cell measurements, and defect-chemical modeling , 1995 .

[53]  Meilin Liu,et al.  Rational design of novel cathode materials in solid oxide fuel cells using first-principles simulations , 2010 .

[54]  J. Mizusaki,et al.  Nonstoichiometry and defect structure of the perovskite-type oxides La1−xSrxFeO3−° , 1985 .

[55]  A. Roytburd,et al.  First principles calculations of oxygen vacancy formation and migration in mixed conducting Ba0.5Sr0.5Co1−yFeyO3−δ perovskites , 2011 .

[56]  J Rossmeisl,et al.  On the behavior of Brønsted-Evans-Polanyi relations for transition metal oxides. , 2011, The Journal of chemical physics.

[57]  H. Inaba,et al.  Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1−xSrxMnO3+d , 2000 .

[58]  S. Stølen,et al.  On the entropic contribution to the redox energetics of SrFeO3−δ , 2001 .

[59]  G. Sawatzky,et al.  Intermediate-spin state and properties of LaCoO3. , 1996, Physical review. B, Condensed matter.

[60]  Michele Pavone,et al.  Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials , 2011 .

[61]  D. Morgan,et al.  Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells , 2012 .

[62]  Eugene A. Kotomin,et al.  Pathways for Oxygen Incorporation in Mixed Conducting Perovskites: A DFT-Based Mechanistic Analysis for (La, Sr)MnO3−δ , 2010 .

[63]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[64]  Tae H. Lee Oxygen permeation in dense SrCo0.8Fe0.2O3 − δ membranes: Surface exchange kinetics versus bulk diffusion , 1997 .

[65]  Peter R. Slater,et al.  Solid-State Materials for Clean Energy: Insights from Atomic-Scale Modeling , 2009 .

[66]  H. Anderson,et al.  Oxidation-reduction behavior of undoped and Sr-doped LaMnO3 nonstoichiometry and defect structure , 1989 .

[67]  Stephen J. Skinner,et al.  Materials development for intermediate-temperature solid oxide electrochemical devices , 2012, Journal of Materials Science.

[68]  T. Jacob,et al.  Electronic structure and thermodynamic stability of LaMnO 3 and La 1-x Sr x MnO 3 (001) surfaces: Ab initio calculations , 2008 .

[69]  J. Maier On the correlation of macroscopic and microscopic rate constants in solid state chemistry , 1998 .

[70]  Vladislav V. Kharton,et al.  Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review , 2008 .

[71]  Scott A. Barnett,et al.  Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance , 1997 .

[72]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[73]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[74]  D. Tsvetkov,et al.  Oxygen nonstoichiometry, defect structure and defect-induced expansion of undoped perovskite LaMnO3±δ , 2010 .

[75]  C. Catlow,et al.  A new hybrid scheme of computer simulation based on Hades and Monte Carlo: Application to ionic conductivity in Y3+ doped CeO2 , 1986 .

[76]  Manfred Martin,et al.  Determining oxygen isotope profiles in oxides with time-of-flight SIMS , 2005 .

[77]  Zongping Shao,et al.  Re-evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3- δ perovskite as oxygen semi-permeable membrane , 2007 .

[78]  W. Goddard,et al.  Atomistic simulations of the LaMnO3(110) polar surface , 2003 .

[79]  Zongping Shao,et al.  A high-performance cathode for the next generation of solid-oxide fuel cells , 2004, Nature.

[80]  T. Fister,et al.  In situ characterization of strontium surface segregation in epitaxial La0.7Sr0.3MnO3 thin films as a function of oxygen partial pressure , 2008 .

[81]  J. Maier,et al.  First Principles Modeling of Oxygen Mobility in Perovskite SOFC Cathode and Oxygen Permeation Membrane Materials , 2011 .

[82]  M. Rȩkas,et al.  Defect Chemistry of (La,Sr)MnO3 , 2005 .

[83]  Jürgen Fleig,et al.  Quantitative Comparison of Mixed Conducting SOFC Cathode Materials by Means of Thin Film Model Electrodes , 2007 .

[84]  David N. Mueller,et al.  A kinetic study of the decomposition of the cubic perovskite-type oxide Ba(x)Sr(1-x)Co(0.8)Fe(0.2)O(3-delta) (BSCF) (x = 0.1 and 0.5). , 2010, Physical chemistry chemical physics : PCCP.

[85]  E. Kotomin,et al.  The Intrinsic Defects, Disordering, and Structural Stability of BaxSr1–xCoyFe1–yO3−δ Perovskite Solid Solutions , 2012 .

[86]  M. Mogensen,et al.  High-performance lanthanum-ferrite-based cathode for SOFC , 2005 .

[87]  E. Wachsman,et al.  Stabilization Mechanisms of LaFeO3 (010) Surfaces Determined with First Principles Calculations , 2011 .

[88]  Armin Feldhoff,et al.  Phase Stability and Permeation Behavior of a Dead-End Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-delta) Tube Membrane in High-Purity Oxygen Production , 2011 .

[89]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[90]  R. Ramprasad,et al.  Adsorption of atomic oxygen on cubic PbTiO3 and LaMnO3 (001) surfaces: A density functional theory study , 2010 .

[91]  R. A. De Souza,et al.  A SIMS study of oxygen tracer diffusion and surface exchange in La0.8Sr0.2MnO3+δ , 2000 .

[92]  E. Kotomin,et al.  First principles calculations of (Ba,Sr)(Co,Fe)O3 − δ structural stability , 2013 .

[93]  Jürgen Fleig,et al.  Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3-δ model electrodes , 2006 .

[94]  W. Haije,et al.  Oxygen stoichiometry and chemical expansion of Ba0.5Sr0.5Co0.8Fe0.2O3- δ measured by in situ neutron diffraction , 2006 .

[95]  V. Cherepanov,et al.  Defect equilibria and partial molar properties of (La,Sr)(Co,Fe)O3−δ , 2006 .

[96]  P. Hagenmuller,et al.  Preparation and characterization of Fully stoichiometric SrCoO3 by electrochemical oxidation , 1993 .

[97]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[98]  P. Slater,et al.  New Chemical Systems for Solid Oxide Fuel Cells , 2010 .

[99]  D. Morgan,et al.  Cation interdiffusion model for enhanced oxygen kinetics at oxide heterostructure interfaces. , 2012, Physical chemistry chemical physics : PCCP.

[100]  Takafumi D. Yamamoto,et al.  BaFeO3: a ferromagnetic iron oxide. , 2011, Angewandte Chemie.

[101]  J. Maier,et al.  Formation and migration of oxygen vacancies in La(1-x)Sr(x)Co(1-y)Fe(y)O(3-δ) perovskites: insight from ab initio calculations and comparison with Ba(1-x)Sr(x)Co(1-y)Fe(y)O(3-δ). , 2013, Physical chemistry chemical physics : PCCP.

[102]  H. Kageyama,et al.  Infinite-layer iron oxide with a square-planar coordination , 2007, Nature.

[103]  David N. Mueller,et al.  Oxidation states of the transition metal cations in the highly nonstoichiometric perovskite-type oxide Ba0.1Sr0.9Co0.8Fe0.2O3−δ , 2009 .

[104]  B. Yildiz,et al.  New Insights into the Strain Coupling to Surface Chemistry, Electronic Structure, and Reactivity of La0.7Sr0.3MnO3 , 2011 .

[105]  R. Evarestov,et al.  Ab initio calculations of the LaMnO3 surface properties , 2004 .

[106]  K. Kudin,et al.  Linear scaling density functional theory with Gaussian orbitals and periodic boundary conditions , 2000 .

[107]  Jürgen Fleig,et al.  Solid Oxide Fuel Cell Cathodes: Polarization Mechanisms and Modeling of the Electrochemical Performance , 2003 .

[108]  G. Wulff,et al.  XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen , 1901 .

[109]  T. Itoh,et al.  Detailed insights into the structural properties and oxygen-pathways in orthorhombic Ba0.5Sr0.5Co0.8Fe0.2O3–δ by electronic-structure theory , 2012 .

[110]  Dane Morgan,et al.  Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes , 2009 .

[111]  Ming Liu,et al.  Epitaxial Strain-Induced Chemical Ordering in La0.5Sr0.5CoO3−δ Films on SrTiO3 , 2011 .

[112]  R. Evarestov,et al.  Thermodynamic stability and disordering in LacSr1−cMnO3 solid solutions , 2006 .

[113]  H. Inaba,et al.  Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1−xSrxMnO3 , 2000 .

[114]  J. Malzbender,et al.  Influence of thermal history on the cubic-to-hexagonal phase transformation and creep behaviour of B , 2011 .

[115]  Meilin Liu,et al.  Computational study on the catalytic mechanism of oxygen reduction on La(0.5)Sr(0.5)MnO(3) in solid oxide fuel cells. , 2007, Angewandte Chemie.

[116]  H. Habermeier,et al.  The geometry dependence of the polarization resistance of Sr-doped LaMnO3 microelectrodes on yttria-stabilized zirconia , 2002 .

[117]  U. Spitsbergen The crystal structures of BaZnO2, BaCoO2 and BaMnO2 , 1960 .

[118]  B. Yildiz,et al.  Mechanism for enhanced oxygen reduction kinetics at the (La,Sr)CoO3−δ/(La,Sr)2CoO4+δ hetero-interface , 2012 .

[119]  B. Uberuaga,et al.  Cation diffusion in magnesium aluminate spinel , 2009 .

[120]  Allan J. Jacobson,et al.  Materials for Solid Oxide Fuel Cells , 2010 .

[121]  M. A. Peña,et al.  Chemical structures and performance of perovskite oxides. , 2001, Chemical reviews.

[122]  J. González-Calbet,et al.  The orthorhombic (Ba8Co6O18)α(Ba8Co8024)β series, a new family of monodimensional oxides , 2000 .

[123]  H. Tagawa,et al.  Nonstoichiometry of the perovskite-type oxides La1−xSrxCoO3−δ , 1989 .

[124]  A. Feldhoff,et al.  In Situ Study of the Reaction Sequence in the Sol–Gel Synthesis of a (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ Perovskite by X‐Ray Diffraction and Transmission Electron Microscopy , 2007 .

[125]  Joachim Maier,et al.  Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications , 2001 .

[126]  Hans Peter Buchkremer,et al.  Novel high-performance solid oxide fuel cells with bulk ionic conductance dominated thin-film electrolytes , 2012 .

[127]  Donald G Truhlar,et al.  Density functional theory for transition metals and transition metal chemistry. , 2009, Physical chemistry chemical physics : PCCP.

[128]  L. Gauckler,et al.  Micro-solid oxide fuel cells using free-standing 3 mol.% yttria-stabilised-tetragonal-zirconia-polyc , 2011 .

[129]  J. Maier,et al.  First Principles Calculations of Oxygen Vacancy Formation and Migration in Ba1−xSrxCo1−yFeyO3−δ Perovskites , 2011 .

[130]  J. Kilner,et al.  Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: Part II. Oxygen surface exchange , 1999 .

[131]  Hui Xiong,et al.  An experimental investigation into micro-fabricated solid oxide fuel cells with ultra-thin La0.6Sr0.4Co0.8Fe0.2O3 cathodes and yttria-doped zirconia electrolyte films , 2009 .

[132]  A. Jacobson A powder neutron diffraction study of the structure of and oxygen vacancy distribution in 6H BaFeO2.79 , 1976 .

[133]  J. Maier,et al.  Surface Kinetics and Mechanism of Oxygen Incorporation Into Ba1 − x Sr x Co y Fe1 − y O3 − δ SOFC Microelectrodes , 2010 .

[134]  A. Feldhoff,et al.  Correlation of the Formation and the Decomposition Process of the BSCF Perovskite at Intermediate Temperatures , 2008 .

[135]  N. Yamazoe,et al.  Mixed ionic-electronic conductivity of La1−xSrxCo1−yFeyO3−δ perovskite-type oxides , 1988 .

[136]  E. Gaudin,et al.  Crystal structure of Ba12Co11O33. Reinvestigation using the superspace group approach of orthorhombic oxides A1+x(A'xB1-x)O3 based on [A8O24] and [A8A'2O18] layers , 2002 .

[137]  Ib Chorkendorff,et al.  Understanding the electrocatalysis of oxygen reduction on platinum and its alloys , 2012 .

[138]  R. Evarestov,et al.  Comparative density-functional LCAO and plane-wave calculations of LaMnO3 surfaces , 2005 .

[139]  U. Starke,et al.  Oxygen tracer diffusion in dense Ba0.5Sr0.5Co0.8Fe0.2O3−δ films , 2009 .

[140]  K. Yamaji,et al.  Effect of strontium concentration on sulfur poisoning of LSCF cathodes , 2012 .

[141]  F. Baumann,et al.  Ba0.5Sr0.5Co0.8Fe0.2O3−δ thin film microelectrodes investigated by impedance spectroscopy , 2006 .

[142]  R. Evarestov,et al.  Periodic models in quantum chemical simulations of F centers in crystalline metal oxides , 2007 .

[143]  David N. Mueller,et al.  Phase Stability and Oxygen Nonstoichiometry of Highly Oxygen-Deficient Perovskite-Type Oxides: A Case Study of (Ba,Sr)(Co,Fe)O3−δ , 2012 .

[144]  T. Grande,et al.  High-temperature compressive creep behaviour of the perovskite-type oxide Ba0.5Sr0.5Co0.8Fe0.2O3 − δ , 2009 .

[145]  Mitsuharu Konuma,et al.  Strong Performance Improvement of La0.6Sr0.4Co0.8Fe0.2O3 − δ SOFC Cathodes by Electrochemical Activation , 2005 .

[146]  J. Kilner,et al.  Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells , 2007 .

[147]  Chunwen Sun,et al.  Cathode materials for solid oxide fuel cells: a review , 2010 .

[148]  J. Alonso,et al.  Polymorphism of Ba1–xSrxCoO3–δ (0≤ x≤ 1) Perovskites: A Thermal and Structural Study by Neutron Diffraction , 2008 .

[149]  B. Yildiz,et al.  Chemical Heterogeneities on La0.6Sr0.4CoO3−δ Thin Films—Correlations to Cathode Surface Activity and Stability , 2012 .

[150]  Meilin Liu,et al.  Oxygen reduction on LaMnO3-Based cathode materials in solid oxide fuel cells , 2007 .

[151]  G. E. Matthews,et al.  A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions , 2001 .

[152]  H. Tuller,et al.  Investigation of surface Sr segregation in model thin film solid oxide fuel cell perovskite electrodes , 2012 .

[153]  K. Wiik,et al.  Structural instability of cubic perovskite BaxSr1 − xCo1 − yFeyO3 − δ , 2008 .

[154]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[155]  E. Kotomin,et al.  The first-principles treatment of the electron-correlation and spin-orbital effects in uranium mononitride nuclear fuels. , 2012, Physical chemistry chemical physics : PCCP.

[156]  Richard Dronskowski,et al.  First-principles electronic-structure calculations on the stability and oxygen conductivity in Ba0.5Sr0.5Co0.8Fe0.2O3−δ , 2011 .

[157]  E. Ivers-Tiffée,et al.  Decomposition pathway of cubic Ba0.5Sr0.5Co0.8Fe0.2O3 − δ between 700 °C and 1000 °C analyzed by electron microscopic techniques , 2012 .

[158]  Raymond J. Gorte,et al.  High‐Performance SOFC Cathodes Prepared by Infiltration , 2009 .

[159]  H. Kageyama,et al.  Anisotropic oxygen diffusion at low temperature in perovskite-structure iron oxides. , 2010, Nature chemistry.

[160]  E. Wachsman,et al.  Stoichiometry of the LaFeO 3 (010) surface determined from first-principles and thermodynamic calculations , 2011 .

[161]  J. Kitchin,et al.  Effects of strain, d-band filling, and oxidation state on the surface electronic structure and reactivity of 3d perovskite surfaces. , 2012, The Journal of chemical physics.

[162]  J. Kilner,et al.  Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: Part I. Oxygen tracer diffusion , 1998 .

[163]  R. Evarestov,et al.  Jahn-Teller effect in the phonon properties of defective SrTiO3 from first principles , 2012 .

[164]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[165]  Bilge Yildiz,et al.  Surface electronic structure transitions at high temperature on perovskite oxides: the case of strained La0.8Sr0.2CoO3 thin films. , 2011, Journal of the American Chemical Society.

[166]  J. Maier Interaction of oxygen with oxides:: How to interpret measured effective rate constants? , 2000 .

[167]  J. Kilner,et al.  Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells , 2010 .

[168]  J. Kilner,et al.  Oxygen tracer diffusion and surface exchange kinetics in La0.6Sr0.4CoO3 − δ , 2010 .

[169]  Ahmad K. Sleiti,et al.  Understanding oxygen vacancy migration and clustering in barium strontiumcobalt iron oxide , 2010 .

[170]  K. Kishio,et al.  Diffusion of oxide ion vacancies in perovskite-type oxides , 1988 .

[171]  E. P. Murray,et al.  Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 composite cathodes , 2002 .

[172]  Shumin Fang,et al.  Phase transformation and oxygen equilibration kinetics of pure and Zr-doped Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite oxide probed by electrical conductivity relaxation , 2010 .

[173]  J. Santiso,et al.  Deposition and characterisation of epitaxial oxide thin films for SOFCs , 2011 .

[174]  J. Jamnik,et al.  Oxygen Reduction Kinetics of Lanthanum Manganite (LSM) Model Cathodes: Partial Pressure Dependence and Rate‐Limiting Steps , 2008 .

[175]  J. Maier,et al.  Atomic, electronic and thermodynamic properties of cubic and orthorhombic LaMnO3 surfaces , 2009 .

[176]  R. Stoffel,et al.  Ab initio thermochemistry of solid-state materials. , 2010, Angewandte Chemie.

[177]  Meilin Liu,et al.  Refinement of the bulk defect model for LaxSr1 − xMnO3 ± δ , 2008 .

[178]  D. Fuks,et al.  Ab initio thermodynamics of BacSr(1-c)TiO3solid solutions , 2005 .

[179]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.