GENERALIZED NEYMAN-PEARSON LEMMA VIA CONVEX DUALITY ⁄
暂无分享,去创建一个
[1] J. Komlos. A generalization of a problem of Steinhaus , 1967 .
[2] V. Benes. Existence of Optimal Stochastic Control Laws , 1971 .
[3] Jaksa Cvitanic. Minimizing Expected Loss of Hedging in Incomplete and Constrained Markets , 2000, SIAM J. Control. Optim..
[4] Jaksa Cvitanic,et al. On dynamic measures of risk , 1999, Finance Stochastics.
[5] Gerald S. Rogers,et al. Mathematical Statistics: A Decision Theoretic Approach , 1967 .
[6] Steven E. Shreve,et al. A Duality Method for Optimal Consumption and Investment Under Short- Selling Prohibition. I. General Market Coefficients , 1992 .
[7] V. Baumann,et al. Eine parameterfreie Theorie der ungünstigsten Verteilungen für das Testen von Hypothesen , 1968 .
[8] I. Vajda. Theory of statistical inference and information , 1989 .
[9] Jakša Cvitanić,et al. Maximizing the probability of a perfect hedge , 1999 .
[10] Ioannis Karatzas,et al. Adaptive control of a diffusion to a goal and a parabolic Monge–Ampère-type equation , 1997 .
[11] P. J. Huber,et al. Minimax Tests and the Neyman-Pearson Lemma for Capacities , 1973 .
[12] M. Schwartz,et al. New proofs of a theorem of Komlós , 1986 .
[13] Hermann Witting,et al. Mathematische Statistik II , 1985 .
[14] Jak Sa Cvitani. Minimizing Expected Loss of Hedging in Incomplete and Constrained Markets , 1998 .
[15] On the Existence of Least Favorable Distributions , 1952 .
[16] Ioannis Karatzas,et al. Brownian Motion and Stochastic Calculus , 1987 .
[17] H. Witting,et al. Optimale Tests und ungünstigste Verteilungen , 1967 .
[18] J. Aubin,et al. Applied Nonlinear Analysis , 1984 .