GENERALIZED NEYMAN-PEARSON LEMMA VIA CONVEX DUALITY ⁄

We extend the classical Neyman-Pearson theory for testing composite hypotheses versus composite alternatives, using a convex duality approach, first employed by Witting. Results of Aubin and Ekeland from non-smooth convex analysis are used, along with a theorem of Koml6s, in order to establish the existence of a max-min optimal test in considerable generality, and to investigate its properties. The theory is illustrated on representative examples involving Gaussian measures on Euclidean and Wiener space.

[1]  J. Komlos A generalization of a problem of Steinhaus , 1967 .

[2]  V. Benes Existence of Optimal Stochastic Control Laws , 1971 .

[3]  Jaksa Cvitanic Minimizing Expected Loss of Hedging in Incomplete and Constrained Markets , 2000, SIAM J. Control. Optim..

[4]  Jaksa Cvitanic,et al.  On dynamic measures of risk , 1999, Finance Stochastics.

[5]  Gerald S. Rogers,et al.  Mathematical Statistics: A Decision Theoretic Approach , 1967 .

[6]  Steven E. Shreve,et al.  A Duality Method for Optimal Consumption and Investment Under Short- Selling Prohibition. I. General Market Coefficients , 1992 .

[7]  V. Baumann,et al.  Eine parameterfreie Theorie der ungünstigsten Verteilungen für das Testen von Hypothesen , 1968 .

[8]  I. Vajda Theory of statistical inference and information , 1989 .

[9]  Jakša Cvitanić,et al.  Maximizing the probability of a perfect hedge , 1999 .

[10]  Ioannis Karatzas,et al.  Adaptive control of a diffusion to a goal and a parabolic Monge–Ampère-type equation , 1997 .

[11]  P. J. Huber,et al.  Minimax Tests and the Neyman-Pearson Lemma for Capacities , 1973 .

[12]  M. Schwartz,et al.  New proofs of a theorem of Komlós , 1986 .

[13]  Hermann Witting,et al.  Mathematische Statistik II , 1985 .

[14]  Jak Sa Cvitani Minimizing Expected Loss of Hedging in Incomplete and Constrained Markets , 1998 .

[15]  On the Existence of Least Favorable Distributions , 1952 .

[16]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[17]  H. Witting,et al.  Optimale Tests und ungünstigste Verteilungen , 1967 .

[18]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .