Lattice-Based Public Key Encryption with Keyword Search

Public key Encryption with Keyword Search (PEKS) aims in mitigating the impacts of data privacy versus utilization dilemma by allowing any user in the system to send encrypted files to the server to be searched by a receiver. The receiver can retrieve the encrypted files containing specific keywords by providing the corresponding trapdoors of these keywords to the server. Despite their merits, the existing PEKS schemes introduce a high end-toend delay that may hinder their adoption in practice. Moreover, they do not scale well for large security parameters and provide no post-quantum security promise. In this paper, we propose novel lattice-based PEKS schemes that offer a high computational efficiency along with better security assurances than that of existing alternatives. Specifically, our NTRUPEKS scheme achieves 18 times lower end-to-end delay than the most efficient pairing-based alternatives. Our LWE-PEKS offers provable security in the standard model with a reduction to the worst-case lattice problems. We fully implemented our NTRU-PEKS on embedded devices with a deployment on real cloud infrastructures to demonstrate its effectiveness.

[1]  Joonsang Baek,et al.  Public Key Encryption with Keyword Search Revisited , 2008, ICCSA.

[2]  Oded Regev,et al.  On lattices, learning with errors, random linear codes, and cryptography , 2009, JACM.

[3]  Randy H. Katz,et al.  Above the Clouds: A Berkeley View of Cloud Computing , 2009 .

[4]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[5]  Miklós Ajtai,et al.  Generating Hard Instances of the Short Basis Problem , 1999, ICALP.

[6]  Craig Gentry,et al.  Trapdoors for hard lattices and new cryptographic constructions , 2008, IACR Cryptol. ePrint Arch..

[7]  David Cash,et al.  How to Delegate a Lattice Basis , 2009, IACR Cryptol. ePrint Arch..

[8]  Nick Howgrave-Graham,et al.  IEEE P1363.1 Draft 10: Draft Standard for Public Key Cryptographic Techniques Based on Hard Problems over Lattices. , 2008 .

[9]  Shafi Goldwasser,et al.  Complexity of lattice problems - a cryptographic perspective , 2002, The Kluwer international series in engineering and computer science.

[10]  Chris Peikert,et al.  Generating Shorter Bases for Hard Random Lattices , 2009, Theory of Computing Systems.

[11]  Daniele Micciancio,et al.  Worst-case to average-case reductions based on Gaussian measures , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[12]  Elaine Shi,et al.  Multi-Dimensional Range Query over Encrypted Data , 2007, 2007 IEEE Symposium on Security and Privacy (SP '07).

[13]  Phong Q. Nguyen,et al.  BKZ 2.0: Better Lattice Security Estimates , 2011, ASIACRYPT.

[14]  Chris Peikert,et al.  Better Key Sizes (and Attacks) for LWE-Based Encryption , 2011, CT-RSA.

[15]  Hideki Imai,et al.  Generic Combination of Public Key Encryption with Keyword Search and Public Key Encryption , 2007, CANS.

[16]  Léo Ducas,et al.  Efficient Identity-Based Encryption over NTRU Lattices , 2014, ASIACRYPT.

[17]  M. Bellare,et al.  Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and Extensions , 2008, Journal of Cryptology.

[18]  Dawn Xiaodong Song,et al.  Practical techniques for searches on encrypted data , 2000, Proceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000.

[19]  William Whyte,et al.  NTRUSIGN: Digital Signatures Using the NTRU Lattice , 2003, CT-RSA.

[20]  Jorge Guajardo,et al.  Dynamic Searchable Symmetric Encryption with Minimal Leakage and Efficient Updates on Commodity Hardware , 2015, SAC.

[21]  Charalampos Papamanthou,et al.  Dynamic searchable symmetric encryption , 2012, IACR Cryptol. ePrint Arch..

[22]  Mihir Bellare,et al.  Deterministic and Efficiently Searchable Encryption , 2007, CRYPTO.

[23]  Chengyu Hu,et al.  A Secure Searchable Public Key Encryption Scheme with a Designated Tester against Keyword Guessing Attacks and Its Extension , 2011, CSEE.

[24]  Julien Bringer,et al.  Error-Tolerant Searchable Encryption , 2009, 2009 IEEE International Conference on Communications.

[25]  Kihyun Kim,et al.  Public Key Encryption with Conjunctive Field Keyword Search , 2004, WISA.

[26]  Nicolas Gama,et al.  Predicting Lattice Reduction , 2008, EUROCRYPT.

[27]  Joseph H. Silverman,et al.  NTRU: A Ring-Based Public Key Cryptosystem , 1998, ANTS.

[28]  Rafail Ostrovsky,et al.  Public Key Encryption with Keyword Search , 2004, EUROCRYPT.

[29]  Andreas Peter,et al.  A Survey of Provably Secure Searchable Encryption , 2014, ACM Comput. Surv..

[30]  Brice Minaud,et al.  Forward and Backward Private Searchable Encryption from Constrained Cryptographic Primitives , 2017, CCS.

[31]  Dong Hoon Lee,et al.  Constructing PEKS schemes secure against keyword guessing attacks is possible? , 2009, Comput. Commun..

[32]  Xavier Boyen,et al.  Lattice Mixing and Vanishing Trapdoors A Framework for Fully Secure Short Signatures and more , 2010 .

[33]  Attila Altay Yavuz,et al.  High-Speed High-Security Public Key Encryption with Keyword Search , 2017, DBSec.

[34]  Shafi Goldwasser,et al.  Complexity of lattice problems , 2002 .

[35]  Willi Meier,et al.  SHA-3 proposal BLAKE , 2009 .

[36]  Raphael Bost,et al.  Sophos - Forward Secure Searchable Encryption , 2016, IACR Cryptol. ePrint Arch..

[37]  Erdem Alkim,et al.  Post-quantum Key Exchange - A New Hope , 2016, USENIX Security Symposium.

[38]  Dan Boneh,et al.  Efficient Lattice (H)IBE in the Standard Model , 2010, EUROCRYPT.

[39]  Brent Waters,et al.  Conjunctive, Subset, and Range Queries on Encrypted Data , 2007, TCC.

[40]  Vishal Saraswat,et al.  Public Key Encryption with Searchable Keywords Based on Jacobi Symbols , 2007, INDOCRYPT.

[41]  Dong Hoon Lee,et al.  Off-Line Keyword Guessing Attacks on Recent Keyword Search Schemes over Encrypted Data , 2006, Secure Data Management.

[42]  Léo Ducas,et al.  Faster Gaussian Lattice Sampling Using Lazy Floating-Point Arithmetic , 2012, ASIACRYPT.

[43]  Shai Halevi,et al.  A sufficient condition for key-privacy , 2005, IACR Cryptol. ePrint Arch..

[44]  Chris Peikert,et al.  On Ideal Lattices and Learning with Errors over Rings , 2010, JACM.

[45]  Léo Ducas,et al.  Lattice Signatures and Bimodal Gaussians , 2013, IACR Cryptol. ePrint Arch..

[46]  Oded Regev,et al.  Lattice-Based Cryptography , 2006, CRYPTO.

[47]  Mihir Bellare,et al.  Key-Privacy in Public-Key Encryption , 2001, ASIACRYPT.

[48]  Willy Susilo,et al.  Public key encryption with keyword search secure against keyword guessing attacks without random oracle , 2013, Inf. Sci..

[49]  Craig Costello,et al.  Post-Quantum Key Exchange for the TLS Protocol from the Ring Learning with Errors Problem , 2015, 2015 IEEE Symposium on Security and Privacy.

[50]  Miklós Ajtai,et al.  Generating Hard Instances of Lattice Problems , 1996, Electron. Colloquium Comput. Complex..

[51]  Vladimir Vujovic,et al.  Raspberry Pi as a Sensor Web node for home automation , 2015, Comput. Electr. Eng..

[52]  Chris Peikert,et al.  A Toolkit for Ring-LWE Cryptography , 2013, IACR Cryptol. ePrint Arch..

[53]  Chris Peikert,et al.  Bonsai Trees (or, Arboriculture in Lattice-Based Cryptography) , 2009, IACR Cryptol. ePrint Arch..

[54]  Phong Q. Nguyen,et al.  Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures , 2006, EUROCRYPT.

[55]  Brent Waters,et al.  Efficient Identity-Based Encryption Without Random Oracles , 2005, EUROCRYPT.