Big Math and the One-Brain Barrier: The Tetrapod Model of Mathematical Knowledge

[1]  John Voight,et al.  4. The $L$-Functions and Modular Forms Database by John E. Cremona, John W. Jones, Andrew V. Sutherland, and John Voight , 2021, Notices of the American Mathematical Society.

[2]  Jacques Carette,et al.  The Space of Mathematical Software Systems - A Survey of Paradigmatic Systems , 2020, ArXiv.

[3]  K. Appel,et al.  Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.

[4]  Markus Wenzel,et al.  Isabelle/jEdit as IDE for Domain-specific Formal Languages and Informal Text Documents , 2018, F-IDE@FLoC.

[5]  Michael Kohlhase,et al.  Virtual Theories - A Uniform Interface to Mathematical Knowledge Bases , 2017, MACIS.

[6]  David Murray-Rust,et al.  Modelling the way mathematics is actually done , 2017, FARM@ICFP.

[7]  Tobias Nipkow,et al.  A FORMAL PROOF OF THE KEPLER CONJECTURE , 2015, Forum of Mathematics, Pi.

[8]  Ursula Martin,et al.  Computational logic and the social , 2016, J. Log. Comput..

[9]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[10]  Michael Kohlhase,et al.  QED Reloaded: Towards a Pluralistic Formal Library of Mathematical Knowledge , 2016, J. Formaliz. Reason..

[11]  John Cremona,et al.  The L-Functions and Modular Forms Database Project , 2015, Foundations of Computational Mathematics.

[12]  C. Bachoc,et al.  On dense sphere packings , 2015 .

[13]  Jeremy Avigad,et al.  The Lean Theorem Prover (System Description) , 2015, CADE.

[14]  Jeremy Avigad,et al.  The Lean Theorem Prover , 2015 .

[15]  Committee on Planning a Global Library of the Mathematical Sciences Developing a 21st Century Global Library for Mathematics Research , 2014, 1404.1905.

[16]  Jeremy Avigad,et al.  A Machine-Checked Proof of the Odd Order Theorem , 2013, ITP.

[17]  Michael Kohlhase,et al.  A scalable module system , 2011, Inf. Comput..

[18]  Tobias Nipkow,et al.  The Isabelle Framework , 2008, TPHOLs.

[19]  U. Norell,et al.  Towards a practical programming language based on dependent type theory , 2007 .

[20]  T. Hales The Kepler conjecture , 1998, math/9811078.

[21]  William M. Farmer MKM: a new interdisciplinary field of research , 2004, SIGS.

[22]  Pierre Castéran,et al.  Interactive Theorem Proving and Program Development , 2004, Texts in Theoretical Computer Science An EATCS Series.

[23]  William M. Farmer,et al.  IMPS: An interactive mathematical proof system , 1990, Journal of Automated Reasoning.

[24]  Frank Pfenning,et al.  Logical Frameworks , 2001, Handbook of Automated Reasoning.

[25]  Stephen M. Watt,et al.  Mathematical Markup Language (MathML) Version 3.0 , 2001, WWW 2001.

[26]  Stephen M. Watt,et al.  “According to Abramowitz and Stegun” or arccoth needn't be uncouth , 2000, SIGS.

[27]  Stephen M. Watt,et al.  According to abramowitz and stegun , 2000 .

[28]  Anthony W. Knapp,et al.  Introduction to the Langlands Program , 2000 .

[29]  Mark Fischetti,et al.  Weaving the web - the original design and ultimate destiny of the World Wide Web by its inventor , 1999 .

[30]  John Harrison,et al.  HOL Light: A Tutorial Introduction , 1996, FMCAD.

[31]  Frederick P. Brooks,et al.  The Mythical Man-Month: Essays on Softw , 1978 .

[32]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[33]  de Ng Dick Bruijn,et al.  The Mathematical Vernacular, A Language for Mathematics with Typed Sets , 1994 .

[34]  Donald E. Knuth,et al.  Literate Programming , 1984, Comput. J..

[35]  Fred P. Brooks,et al.  The Mythical Man-Month , 1975, Reliable Software.

[36]  de Ng Dick Bruijn,et al.  The mathematical language AUTOMATH, its usage, and some of its extensions , 1970 .