The evolution and maintenance of Hox gene clusters in vertebrates and the teleost-specific genome duplication.

Hox genes are known to specify spatial identities along the anterior-posterior axis during embryogenesis. In vertebrates and most other deuterostomes, they are arranged in sets of uninterrupted clusters on chromosomes, and are in most cases expressed in a "colinear" fashion, in which genes closer to the 3-end of the Hox clusters are expressed earlier and more anteriorly and genes close to the 5-end of the clusters later and more posteriorly. In this review, we summarize the current understanding of how Hox gene clusters have been modified from basal lineages of deuterostomes to diverse taxa of vertebrates. Our parsimony reconstruction of Hox cluster architecture at various stages of vertebrate evolution highlights that the variation in Hox cluster structures among jawed vertebrates is mostly due to secondary lineage-specific gene losses and an additional genome duplication that occurred in the actinopterygian stem lineage, the teleost-specific genome duplication (TSGD).

[1]  P. Holland,et al.  The amphioxus Hox cluster: deuterostome posterior flexibility and Hox14 , 2000, Evolution & development.

[2]  Paramvir S. Dehal,et al.  Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes , 2002, Science.

[3]  D. Ferrier Hox Genes: Did the Vertebrate Ancestor Have a Hox14? , 2004, Current Biology.

[4]  A. Meyer,et al.  Phylogenomic analyses of KCNA gene clusters in vertebrates: why do gene clusters stay intact? , 2007, BMC Evolutionary Biology.

[5]  Axel Meyer,et al.  Genome Duplications and Accelerated Evolution of Hox Genes and Cluster Architecture in Teleost Fishes1 , 2001 .

[6]  A. Meyer,et al.  Phylogenetic Timing of the Fish-Specific Genome Duplication Correlates with the Diversification of Teleost Fish , 2004, Journal of Molecular Evolution.

[7]  Eric H Davidson,et al.  Unusual gene order and organization of the sea urchin hox cluster. , 2006, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[8]  F. Ruddle,et al.  Characterization of Hox genes in the bichir, Polypterus palmas. , 2002, The Journal of experimental zoology.

[9]  Fumiko Ohta,et al.  The medaka draft genome and insights into vertebrate genome evolution , 2007, Nature.

[10]  D. Duboule Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. , 1994, Development (Cambridge, England). Supplement.

[11]  A. Meyer,et al.  Recent Advances in the (Molecular) Phylogeny of Vertebrates , 2003 .

[12]  K. Katoh,et al.  Monophyly of Lampreys and Hagfishes Supported by Nuclear DNA–Coded Genes , 1999, Journal of Molecular Evolution.

[13]  William McGinnis,et al.  Homeobox genes and axial patterning , 1992, Cell.

[14]  Sonja J. Prohaska,et al.  The amphioxus Hox cluster: characterization, comparative genomics, and evolution. , 2008, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[15]  Sonja J. Prohaska,et al.  The Shark HoxN Cluster Is Homologous to the Human HoxD Cluster , 2004, Journal of Molecular Evolution.

[16]  Shigehiro Kuraku,et al.  Time Scale for Cyclostome Evolution Inferred with a Phylogenetic Diagnosis of Hagfish and Lamprey cDNA Sequences , 2006, Zoological science.

[17]  Bronwen L. Aken,et al.  Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences , 2007, Nature.

[18]  J. Garcia-Fernández,et al.  Hox and ParaHox genes in Nemertodermatida, a basal bilaterian clade. , 2006, The International journal of developmental biology.

[19]  J. Postlethwait,et al.  Is retinoic acid genetic machinery a chordate innovation? , 2006, Evolution & development.

[20]  Nicholas H. Putnam,et al.  The amphioxus genome illuminates vertebrate origins and cephalochordate biology. , 2008, Genome research.

[21]  Angel Amores,et al.  Hox cluster organization in the jawless vertebrate Petromyzon marinus. , 2002, The Journal of experimental zoology.

[22]  I. Ruvinsky,et al.  Phylogenetic analyses alone are insufficient to determine whether genome duplication(s) occurred during early vertebrate evolution. , 2003, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[23]  K. Peterson Isolation of Hox and Parahox genes in the hemichordate Ptychodera flava and the evolution of deuterostome Hox genes. , 2004, Molecular phylogenetics and evolution.

[24]  Massimo Pasqualetti,et al.  Hox gene expression patterns in Lethenteron japonicum embryos--insights into the evolution of the vertebrate Hox code. , 2007, Developmental biology.

[25]  Y Van de Peer,et al.  Comparative genomics provides evidence for an ancient genome duplication event in fish. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[26]  J. Postlethwait,et al.  Development of a chordate anterior-posterior axis without classical retinoic acid signaling. , 2007, Developmental biology.

[27]  Peter Gruss,et al.  Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid , 1991, Cell.

[28]  P. Holland,et al.  Bayesian Phylogenetic Analysis Supports Monophyly of Ambulacraria and of Cyclostomes , 2002, Zoological science.

[29]  Hans Lehrach,et al.  Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica , 2004, Nature.

[30]  Koji Tamura,et al.  Noncanonical role of Hox14 revealed by its expression patterns in lamprey and shark , 2008, Proceedings of the National Academy of Sciences.

[31]  Sonja J. Prohaska,et al.  Independent Hox-cluster duplications in lampreys. , 2003, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[32]  L. Lundin,et al.  Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. , 1993, Genomics.

[33]  M. Akam Hox and HOM: Homologous gene clusters in insects and vertebrates , 1989, Cell.

[34]  Yuji Kohara,et al.  Organization and structure of hox gene loci in medaka genome and comparison with those of pufferfish and zebrafish genomes. , 2006, Gene.

[35]  S. Kuraku,et al.  Hox code in embryos of Chinese soft-shelled turtle Pelodiscus sinensis correlates with the evolutionary innovation in the turtle. , 2005, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[36]  A. Meyer,et al.  Vertebrate genomics: More fishy tales about Hox genes , 1999, Current Biology.

[37]  Nobuyoshi Shimizu,et al.  Genomic analysis of Hox clusters in the sea lamprey Petromyzon marinus. , 2002, The Journal of experimental zoology.

[38]  S. Papageorgiou Pulling forces acting on Hox gene clusters cause expression collinearity. , 2006, The International journal of developmental biology.

[39]  Xiayun Jiang,et al.  Hox gene clusters in blunt snout bream, Megalobrama amblycephala and comparison with those of zebrafish, fugu and medaka genomes. , 2007, Gene.

[40]  Bobb Schaeffer,et al.  Deuterostome Monophyly and Phylogeny , 1987 .

[41]  Vincent Laudet,et al.  Analysis of lamprey and hagfish genes reveals a complex history of gene duplications during early vertebrate evolution. , 2002, Molecular biology and evolution.

[42]  Paramvir S. Dehal,et al.  Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate , 2005, PLoS biology.

[43]  Massimo Pasqualetti,et al.  Evolutionary biology: Lamprey Hox genes and the evolution of jaws , 2004, Nature.

[44]  S. Kuraku,et al.  Lamprey as an evo‐devo model: Lessons from comparative embryology and molecular phylogenetics , 2002, Genesis.

[45]  Karsten Hokamp,et al.  Extensive genomic duplication during early chordate evolution , 2002, Nature Genetics.

[46]  P. Janvier,et al.  Complete mitochondrial DNA of the hagfish, Eptatretus burgeri: the comparative analysis of mitochondrial DNA sequences strongly supports the cyclostome monophyly. , 2002, Molecular phylogenetics and evolution.

[47]  Axel Meyer,et al.  Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? , 2008, Molecular biology and evolution.

[48]  J. Klein,et al.  Molecular phylogeny of early vertebrates: monophyly of the agnathans as revealed by sequences of 35 genes. , 2003, Molecular biology and evolution.

[49]  Joachim Wittbrodt,et al.  More genes in fish , 1998 .

[50]  M. Groenen,et al.  Sequencing and genomic annotation of the chicken (Gallus gallus) Hox clusters, and mapping of evolutionarily conserved regions , 2007, Cytogenetic and Genome Research.

[51]  J. S. Nelson,et al.  Fishes of the world. , 1978 .

[52]  Jordi Garcia-Fernàndez,et al.  Archetypal organization of the amphioxus Hox gene cluster , 1994, Nature.

[53]  E. Lander,et al.  Anteroposterior Patterning in Hemichordates and the Origins of the Chordate Nervous System , 2003, Cell.

[54]  S. Hedges,et al.  Molecular phylogeny and divergence times of deuterostome animals. , 2005, Molecular biology and evolution.

[55]  E. Boncinelli,et al.  Novel interactions between vertebrate Hox genes. , 1999, The International journal of developmental biology.

[56]  A. Meyer,et al.  Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. , 1999, Current opinion in cell biology.

[57]  E. Lewis A gene complex controlling segmentation in Drosophila , 1978, Nature.

[58]  Nicholas H. Putnam,et al.  The amphioxus genome and the evolution of the chordate karyotype , 2008, Nature.

[59]  Alan Christoffels,et al.  Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. , 2004, Molecular biology and evolution.

[60]  M. Blaxter,et al.  Hox gene evolution in nematodes: novelty conserved. , 2003, Current opinion in genetics & development.

[61]  G. S. Whitt,et al.  Evidence from 18S ribosomal RNA sequences that lampreys and hagfishes form a natural group. , 1992, Science.

[62]  J. Garcia-Fernández Hox, ParaHox, ProtoHox: facts and guesses , 2005, Heredity.

[63]  Charles E. Chapple,et al.  Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype , 2004, Nature.

[64]  E. Lewis,et al.  Splits in fruitfly Hox gene complexes , 1996, Nature.

[65]  J. Joss,et al.  Homeobox genes in the Australian lungfish, Neoceratodus forsteri. , 1999, The Journal of experimental zoology.

[66]  G. Barlow,et al.  Fishes of the world , 2004, Environmental Biology of Fishes.

[67]  F. Delsuc,et al.  Tunicates and not cephalochordates are the closest living relatives of vertebrates , 2006, Nature.

[68]  J. W. Pendleton,et al.  Expansion of the Hox gene family and the evolution of chordates. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Alan Christoffels,et al.  Hox gene clusters in the Indonesian coelacanth, Latimeria menadoensis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Sarah J. Bourlat,et al.  Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida , 2006, Nature.

[71]  B. Schierwater,et al.  Axial Patterning and Diversification in the Cnidaria Predate the Hox System , 2006, Current Biology.

[72]  W. B. Wood,et al.  Caenorhabditis elegans embryonic axial patterning requires two recently discovered posterior-group Hox genes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Peter F Stadler,et al.  The "fish-specific" Hox cluster duplication is coincident with the origin of teleosts. , 2006, Molecular biology and evolution.

[74]  M. Cohn,et al.  Developmental basis of limblessness and axial patterning in snakes , 1999, Nature.

[75]  Yves Van de Peer,et al.  Revisiting recent challenges to the ancient fish-specific genome duplication hypothesis , 2001, Current Biology.

[76]  S. Gaunt,et al.  Colinearity and non-colinearity in the expression of Hox genes in developing chick skin. , 2002, The International journal of developmental biology.

[77]  Morgane Thomas-Chollier,et al.  Comparative phylogenomic analyses of teleost fish Hox gene clusters: lessons from the cichlid fish Astatotilapia burtoni: comment , 2008, BMC Genomics.

[78]  A. Sidow Gen(om)e duplications in the evolution of early vertebrates. , 1996, Current opinion in genetics & development.

[79]  M. Cohn Evolutionary biology: Lamprey Hox genes and the origin of jaws , 2002, Nature.

[80]  D. Ferrier,et al.  Evolution of the Hox/ParaHox gene clusters. , 2003, The International journal of developmental biology.

[81]  David E.K. Ferrier,et al.  Hox genes are not always Colinear , 2006, International journal of biological sciences.

[82]  C. Amemiya,et al.  Evidence for a Hox14 paralog group in vertebrates , 2004, Current Biology.

[83]  Tohru Suzuki,et al.  Cloning and pattern of expression of the shiro-uo vasa gene during embryogenesis and its roles in PGC development. , 2006, The International journal of developmental biology.

[84]  A. Meyer,et al.  Genome duplication, a trait shared by 22000 species of ray-finned fish. , 2003, Genome research.

[85]  Sonja J. Prohaska,et al.  Bichir HoxA cluster sequence reveals surprising trends in ray-finned fish genomic evolution. , 2003, Genome research.

[86]  Sonja J. Prohaska,et al.  Evidence for independent Hox gene duplications in the hagfish lineage: a PCR-based gene inventory of Eptatretus stoutii. , 2004, Molecular phylogenetics and evolution.

[87]  Elena M Cherdantseva,et al.  Geometry and mechanics of teleost gastrulation and the formation of primary embryonic axes. , 2006, The International journal of developmental biology.

[88]  Kazutaka Katoh,et al.  Basal jawed vertebrate phylogeny inferred from multiple nuclear DNA-coded genes , 2004, BMC Biology.

[89]  Axel Meyer,et al.  Comparative phylogenomic analyses of teleost fish Hox gene clusters: lessons from the cichlid fish Astatotilapia burtoni , 2007, BMC Genomics.

[90]  W Miller,et al.  Hox cluster genomics in the horn shark, Heterodontus francisci. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[91]  A. Collet Biological Asymmetry and Handedness. Ciba Foundation Symposium 162 , 1992 .

[92]  M. Kasahara,et al.  The 2R hypothesis: an update. , 2007, Current opinion in immunology.

[93]  L. Joly,et al.  Zebrafish hox genes: genomic organization and modified colinear expression patterns in the trunk. , 1998, Development.

[94]  Thomas P. Powers and Chris T. Amemiya Evolutionary Plasticity of Vertebrate Hox Genes , 2004 .

[95]  Denis Duboule,et al.  The rise and fall of Hox gene clusters , 2007, Development.

[96]  J. Garcia-Fernández,et al.  From the American to the European amphioxus: towards experimental Evo-Devo at the origin of chordates. , 2009, The International journal of developmental biology.

[97]  Justin Johnson,et al.  Survey Sequencing and Comparative Analysis of the Elephant Shark (Callorhinchus milii) Genome , 2007, PLoS biology.

[98]  Mario Cáceres,et al.  A new split of the Hox gene complex in Drosophila: relocation and evolution of the gene labial. , 2003, Molecular biology and evolution.

[99]  J. Sullivan,et al.  28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes. , 1998, Molecular biology and evolution.

[100]  Klaas Vandepoele,et al.  Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Dirk Steinke,et al.  Three rounds (1R/2R/3R) of genome duplications and the evolution of the glycolytic pathway in vertebrates , 2006, BMC Biology.

[102]  Tetsuro Ikuta,et al.  Organization of Hox genes in ascidians: Present, past, and future , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[103]  Y L Wang,et al.  Zebrafish hox clusters and vertebrate genome evolution. , 1998, Science.

[104]  Jordi Garcia-Fernàndez,et al.  The genesis and evolution of homeobox gene clusters , 2005, Nature Reviews Genetics.

[105]  H. Wada,et al.  Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[106]  A. Meyer,et al.  From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[107]  Shigehiro Kuraku,et al.  Hagfish embryology with reference to the evolution of the neural crest , 2007, Nature.

[108]  Axel Meyer,et al.  Hox clusters as models for vertebrate genome evolution. , 2005, Trends in genetics : TIG.

[109]  '. ANNAc.SHARMAN,et al.  Estimation of Hox gene cluster number in lampreys , 2006 .