Exact, efficient, and complete arrangement computation for cubic curves

The Bentley-Ottmann sweep-line method can compute the arrangement of planar curves, provided a number of geometric primitives operating on the curves are available. We discuss the reduction of the primitives to the analysis of curves and curve pairs, and describe efficient realizations of these analyses for planar algebraic curves of degree three or less. We obtain a complete, exact, and efficient algorithm for computing arrangements of cubic curves. Special cases of cubic curves are conics as well as implicitized cubic splines and Bezier curves. The algorithm is complete in that it handles all possible degeneracies such as tangential intersections and singularities. It is exact in that it provides the mathematically correct result. It is efficient in that it can handle hundreds of curves with a quarter million of segments in the final arrangement. The algorithm has been implemented in C++ as an Exacus library called CubiX.

[1]  Nicola Wolpert,et al.  Jacobi Curves : Computing the Exact Topology of Arrangements of Non-Singular Algebraic Curves , 2000 .

[2]  George E. Collins,et al.  Cylindrical Algebraic Decomposition II: An Adjacency Algorithm for the Plane , 1984, SIAM J. Comput..

[3]  Alkiviadis G. Akritas,et al.  Elements of Computer Algebra with Applications , 1989 .

[4]  Gabriel Taubin,et al.  Rasterizing algebraic curves and surfaces , 1994, IEEE Computer Graphics and Applications.

[5]  Geert-Jan Giezeman,et al.  On the design of CGAL a computational geometry algorithms library , 2000 .

[6]  Iddo Hanniel,et al.  The Design and Implementation of Planar Maps in CGAL , 1999, WAE.

[7]  Micha Sharir,et al.  Arrangements and Their Applications , 2000, Handbook of Computational Geometry.

[8]  Egbert Brieskorn,et al.  Ebene algebraische Kurven , 1981 .

[9]  Xiaorong Hou,et al.  Subresultants with the Bézout Matrix , 2000 .

[10]  Chee-Keng Yap,et al.  A core library for robust numeric and geometric computation , 1999, SCG '99.

[11]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[12]  Iddo Hanniel,et al.  The design and implementation of panar maps in CGAL , 2000, JEAL.

[13]  R. Loos Generalized Polynomial Remainder Sequences , 1983 .

[14]  Günter Rote,et al.  Division-Free Algorithms for the Determinant and the Pfaffian: Algebraic and Combinatorial Approaches , 2001, Computational Discrete Mathematics.

[15]  T. Sakkalis The topological configuration of a real algebraic curve , 1991, Bulletin of the Australian Mathematical Society.

[16]  H. Hilton Plane algebraic curves , 1921 .

[17]  Laureano González Vega,et al.  Various New Expressions for Subresultants and Their Applications , 2004 .

[18]  J. Calmet Computer Algebra , 1982 .

[19]  H. Hong An efficient method for analyzing the topology of plane real algebraic curves , 1996 .

[20]  Elmar Schömer,et al.  An exact and efficient approach for computing a cell in an arrangement of quadrics , 2004, Comput. Geom..

[21]  Dinesh Manocha,et al.  MAPC: a library for efficient and exact manipulation of algebraic points and curves , 1999, SCG '99.

[22]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[23]  B. F. Caviness,et al.  Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.

[24]  Ron Wein,et al.  High-Level Filtering for Arrangements of Conic Arcs , 2002, ESA.

[25]  Maurice Mignotte,et al.  Mathematics for computer algebra , 1991 .

[26]  Alkiviadis G. Akritas,et al.  Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.

[27]  M'hammed El Kahoui,et al.  An elementary approach to subresultants theory , 2003, J. Symb. Comput..

[28]  Robert Bix,et al.  Conics and Cubics: A Concrete Introduction to Algebraic Curves , 1998 .

[29]  J. Stillwell,et al.  Plane Algebraic Curves , 1986 .

[30]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[31]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[32]  Laureano González-Vega,et al.  Minors of Bezout matrices, subresultants and the parameterization of the degree of the polynomial greatest common divisor , 2004, Int. J. Comput. Math..

[33]  Alkiviadis G. Akritas,et al.  There is no “Uspensky's method.” , 1986, SYMSAC '86.

[34]  George David Birkhoff The collected mathematical papers , 1909 .

[35]  Kurt Mehlhorn,et al.  A Computational Basis for Conic Arcs and Boolean Operations on Conic Polygons , 2002, ESA.

[36]  Kurt Mehlhorn,et al.  New bounds for the Descartes method , 2005, SIGS.

[37]  Knut Lage Sundet Singular points of algebraic curves , 2018, Geometry of Curves.

[38]  Elmar Schömer,et al.  Effects of a modular filter on geometric applications , 2004 .

[39]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[40]  P. Zimmermann,et al.  Efficient isolation of polynomial's real roots , 2004 .

[41]  A. Ostrowski Note on Vincent's Theorem , 1950 .

[42]  Matthew H. Austern Generic programming and the STL - using and extending the C++ standard template library , 1999, Addison-Wesley professional computing series.

[43]  Kurt Mehlhorn,et al.  Effective Computational Geometry for Curves and Surfaces , 2005 .

[44]  Bruno Buchberger,et al.  Computer algebra symbolic and algebraic computation , 1982, SIGS.

[45]  Ron Goldman,et al.  Vector elimination: A technique for the implicitization, inversion, and intersection of planar parametric rational polynomial curves , 1984, Comput. Aided Geom. Des..

[46]  Kurt Mehlhorn,et al.  A Separation Bound for Real Algebraic Expressions , 2001, Algorithmica.

[47]  J. Sack,et al.  Handbook of computational geometry , 2000 .

[48]  Paul Pedersen Multivariate Sturm Theory , 1991, AAECC.

[49]  Laureano González-Vega,et al.  Efficient topology determination of implicitly defined algebraic plane curves , 2002, Comput. Aided Geom. Des..

[50]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[51]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[52]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[53]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[54]  Arno Eigenwillig Exact Arrangement Computation for Cubic Curves , 2003 .

[55]  Mohab Safey El Din,et al.  New Structure Theorem for Subresultants , 2000, J. Symb. Comput..

[56]  Victor Y. Pan,et al.  Sign Determination in Residue Number Systems , 1999, Theor. Comput. Sci..

[57]  Laureano González-Vega,et al.  Various New Expressions for Subresultants and Their Applications , 2004, Applicable Algebra in Engineering, Communication and Computing.

[58]  Lutz Kettner,et al.  Two computational geometry libraries: LEDA and CGAL , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[59]  Ioannis Z. Emiris,et al.  Comparing Real Algebraic Numbers of Small Degree , 2004, ESA.

[60]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[61]  Thomas Ottmann,et al.  Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.

[62]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[63]  Thomas Lickteig,et al.  Cauchy index computation , 1996 .

[64]  Geert-Jan Giezeman,et al.  On the design of CGAL a computational geometry algorithms library , 2000, Softw. Pract. Exp..

[65]  Chee-Keng Yap,et al.  A new constructive root bound for algebraic expressions , 2001, SODA '01.

[66]  Ralph R. Martin,et al.  Comparison of interval methods for plotting algebraic curves , 2002, Comput. Aided Geom. Des..

[67]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[68]  C. Hoffmann Algebraic curves , 1988 .

[69]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[70]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[71]  Susanne Schmitt,et al.  The Diamond Operator - Implementation of Exact Real Algebraic Numbers , 2005, CASC.

[72]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[73]  Sylvain Pion,et al.  Towards and open curved kernel , 2004, SCG '04.

[74]  Chee-Keng Yap Complete subdivision algorithms, I: intersection of Bezier curves , 2006, SCG '06.

[75]  Jeremy Johnson,et al.  Algorithms for polynomial real root isolation , 1992 .

[76]  Michael Seel Implementation of planar Nef polyhedra , 2001 .

[77]  George E. Collins,et al.  Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..

[78]  Keith O. Geddes,et al.  Algorithms for computer algebra , 1992 .

[79]  Thomas Lickteig,et al.  Sylvester-Habicht Sequences and Fast Cauchy Index Computation , 2001, J. Symb. Comput..

[80]  R. Loos Computing in Algebraic Extensions , 1983 .

[81]  Dilip K. Banerji,et al.  Sign Detection in Residue Number Systems , 1969, IEEE Transactions on Computers.

[82]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[83]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[84]  Alexander A. Stepanov,et al.  Algorithm‐oriented generic libraries , 1994, Softw. Pract. Exp..

[85]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[86]  Joachim von zur Gathen,et al.  Subresultants revisited , 2003, Theor. Comput. Sci..

[87]  Kurt Mehlhorn,et al.  A Strong and Easily Computable Separation Bound for Arithmetic Expressions Involving Radicals , 2000, Algorithmica.

[88]  W. S. Brown On the subresultant PRS algorithm , 1976, SYMSAC '76.

[89]  Alexei Yu. Uteshev,et al.  On the Bézout Construction of the Resultant , 1999, J. Symb. Comput..

[90]  Olivier Devillers,et al.  Algebraic methods and arithmetic filtering for exact predicates on circle arcs , 2000, SCG '00.

[91]  Ron Goldman,et al.  The method of resolvents: A technique for the implicitization, inversion, and intersection of non-planar, parametric, rational cubic curves , 1985, Comput. Aided Geom. Des..

[92]  Elmar Schömer,et al.  Complete, exact, and efficient computations with cubic curves , 2004, SCG '04.