Adaptive demand peak management in online transport process planning

We investigate the common and integrated dynamic decision making of the coordinator of a supply chain consortium together with a subordinate fleet managing agent offering transport services for the consortium. While the fleet manager aims at minimizing the costs of the generated transport processes, the goal of the coordinator is to keep the reliability and stability of the processes on a reasonable level. It aims to synchronize the transport processes with upstream and downstream parts of the supply chain. The major innovation presented in this article is a framework that controls and adjusts the decision competence distribution between the two planning agents with respect to the current transport process performance. If the transport process timeliness is endangered to fall below a given threshold and thereby the overall supply chain reliability tends to sink, the coordinator is temporarily granted the right to intervene into the planning of the fleet managing agent. Within simulation experiments, we demonstrate that the proposed system is able to increase the reliability of the generated transport processes. We show that the intervention of the superior coordinator agent during workload peaks ensures higher process timeliness than the transport service providing agent is able to achieve without any coordinator interventions.

[1]  Paolo Toth,et al.  The Vehicle Routing Problem , 2002, SIAM monographs on discrete mathematics and applications.

[2]  Sinisa Segvic,et al.  Enhancing the Point Feature Tracker by Adaptive Modelling of the Feature Support , 2006, ECCV.

[3]  Martin Grötschel,et al.  Online-Dispatching of Automobile Service Units , 2002, OR.

[4]  Alan R. McKendall,et al.  A tabu search heuristic for the dynamic space allocation problem , 2006, Comput. Oper. Res..

[5]  Rolf Drechsler,et al.  Applications of Evolutionary Computing, EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC, and EvoTransLog, Naples, Italy, March 26-28, 2008. Proceedings , 2008, EvoWorkshops.

[6]  Christian Bierwirth Adaptive Search and the Management of Logistics Systems: Base Models for Learning Agents , 2000 .

[7]  Michel Gendreau,et al.  Vehicle dispatching with time-dependent travel times , 2003, Eur. J. Oper. Res..

[8]  C. Rego,et al.  Using Tabu search for solving a dynamic multi-terminal truck dispatching problem , 1995 .

[9]  Christos D. Tarantilis,et al.  Dynamic Fleet Management , 2007 .

[10]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[11]  Michel Gendreau,et al.  Traveling Salesman Problems with Profits , 2005, Transp. Sci..

[12]  Bruce L. Golden,et al.  VEHICLE ROUTING: METHODS AND STUDIES , 1988 .

[13]  Günther Zäpfel Produktionswirtschaft : operatives Produktions-Management , 1982 .

[14]  Martin W. P. Savelsbergh,et al.  A dynamic driver management scheme for less-than-truckload carriers , 2008, Comput. Oper. Res..

[15]  Marius M. Solomon,et al.  Recent Developments in Dynamic Vehicle Routing Systems , 2008 .

[16]  Bernhard Fleischmann,et al.  Time-Varying Travel Times in Vehicle Routing , 2004, Transp. Sci..

[17]  Jörn Schönberger,et al.  Online decision making and automatic decision model adaptation , 2009, Comput. Oper. Res..

[18]  B. Brehmer Dynamic decision making: human control of complex systems. , 1992, Acta psychologica.

[19]  Christine Solnon Boosting ACO with a Preprocessing Step , 2002, EvoWorkshops.

[20]  Steve Seiden Randomized Online Scheduling with Delivery Times , 1999, J. Comb. Optim..

[21]  T G Crainic,et al.  PLANNING MODELS FOR FREIGHT TRANSPORTATION. IN: TRANSPORT LOGISTICS , 2002 .

[22]  Jörn Schönberger,et al.  On the Value of Objective Function Adaptation in Online Optimisation , 2007, OR.

[23]  Jörn Schönberger Operational Freight Carrier Planning: Basic Concepts, Optimization Models and Advanced Memetic Algorithms , 2005 .

[24]  Oli B. G. Madsen,et al.  A heuristic method for dispatching repair men , 1995, Ann. Oper. Res..

[25]  Elise Miller-Hooks,et al.  Solving a generalized traveling salesperson problem with stochastic customers , 2007, Comput. Oper. Res..

[26]  Stefan Nickel,et al.  Operations Research, Proceedings 2007, Selected Papers of the Annual International Conference of the German Operations Research Society (GOR), Saarbrücken, Germany, September 5-7, 2007 , 2008, OR.

[27]  D. Preßmar,et al.  Operations research proceedings , 1990 .

[28]  E. Schragenheim,et al.  Peak management , 2001 .

[29]  Yu-Hsin Liu A hybrid scatter search for the probabilistic traveling salesman problem , 2007, Comput. Oper. Res..

[30]  Gilbert Laporte,et al.  Waiting strategies for the dynamic pickup and delivery problem with time windows , 2004 .

[31]  Warren B. Powell,et al.  Adaptive Labeling Algorithms for the Dynamic Assignment Problem , 2000, Transp. Sci..

[32]  R. Cyert,et al.  Theory of the Firm , 1966 .

[33]  Leen Stougie,et al.  Serving Requests with On-line Routing , 1994, SWAT.

[34]  Cem Saydam,et al.  A multiperiod set covering location model for dynamic redeployment of ambulances , 2008, Comput. Oper. Res..

[35]  George M. Giaglis,et al.  Dynamic Management Of A Delayed Delivery Vehicle In A City Logistics Environment , 2007 .

[36]  Marius M. Solomon,et al.  Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints , 1987, Oper. Res..

[37]  Eleni Hadjiconstantinou,et al.  Routing under Uncertainty: An Application in the Scheduling of Field Service Engineers , 2002, The Vehicle Routing Problem.

[38]  Herbert Kopfer,et al.  Approaches for Modelling and Solving the Integrated Transportation and Forwarding Problem , 2007 .

[39]  Dirk C. Mattfeld,et al.  Management logistischer Netzwerke , 2007 .

[40]  Jörn Schönberger,et al.  Rules for the Identification Portfolio-incompatible Requests in Dynamic Vehicle Routing , 2009, Wirtschaftsinformatik.

[41]  Bernhard Fleischmann,et al.  Dynamic Vehicle Routing Based on Online Traffic Information , 2004, Transp. Sci..

[42]  José Fernando Oliveira,et al.  Heuristics for a dynamic rural postman problem , 2007, Comput. Oper. Res..

[43]  Michel Gendreau,et al.  Heuristics and lower bounds for the bin packing problem with conflicts , 2004, Comput. Oper. Res..

[44]  Sven Oliver Krumke,et al.  Reoptimization gaps versus model errors in online-dispatching of service units for ADAC , 2006, Discret. Appl. Math..

[45]  Leslie Pack Kaelbling,et al.  On the Complexity of Solving Markov Decision Problems , 1995, UAI.

[46]  Stefan Voß,et al.  Dispatching of an Electric Monorail System: Applying Metaheuristics to an Online Pickup and Delivery Problem , 2004, Transp. Sci..

[47]  Gilbert Laporte,et al.  Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows , 2004 .

[48]  Erling D. Andersen,et al.  Presolving in linear programming , 1995, Math. Program..

[49]  R Séguin,et al.  Real-time decision problems: an operational research perspective , 1997 .

[50]  Matthew Arnold,et al.  A Survey of Adaptive Optimization in Virtual Machines , 2005, Proceedings of the IEEE.

[51]  Susanne Albers,et al.  Delayed Information and Action in On-Line Algorithms , 2001, Inf. Comput..

[52]  Jean-Yves Potvin,et al.  Vehicle routing and scheduling with dynamic travel times , 2006, Comput. Oper. Res..

[53]  Warren B. Powell,et al.  A Stochastic Formulation of the Dynamic Assignment Problem, with an Application to Truckload Motor Carriers , 1996, Transp. Sci..

[54]  Hector A. Munera The Generalized Means Model (GMM) for non-deterministic decision making: Its normative and descriptive power, including sketch of the representation theorem , 1985 .

[55]  Sven Oliver Krumke,et al.  Real-Time Dispatching of Guided and Unguided Automobile Service Units with Soft Time Windows , 2002, ESA.

[56]  Gilbert Laporte,et al.  Horizontal cooperation among freight carriers: request allocation and profit sharing , 2008, J. Oper. Res. Soc..

[57]  Michael Wooldridge,et al.  Introduction to multiagent systems , 2001 .

[58]  Michael Wooldridge,et al.  An introduction to multiagent systems Wiley , 2002 .

[59]  Jörn Schönberger,et al.  Schedule Nervousness Reduction in Transport RePlanning , 2008 .

[60]  T. Williams Special products and uncertainty in production/inventory systems☆ , 1984 .

[61]  Jeremy Reynolds,et al.  Externalizing employment: Flexible staffing arrangements in US organizations , 2003 .

[62]  Eugene L. Lawler,et al.  Traveling Salesman Problem , 2016 .

[63]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[64]  A. B. Illa Critical probabilities and determinism in decision theory , 1966 .

[65]  J. van Leeuwen,et al.  Applications of Evolutionary Computing , 2003, Lecture Notes in Computer Science.

[66]  F. Calza,et al.  EDI network and logistics management at Unilever‐Sagit , 1997 .

[67]  Stefan Voß,et al.  Effiziente Prozesse im Kombinierten Verkehr – Ein neuer Lösungsansatz zur Disposition von Portalkränen , 2003 .

[68]  Harilaos N. Psaraftis,et al.  Dynamic vehicle routing: Status and prospects , 1995, Ann. Oper. Res..

[69]  Randolph W. Hall,et al.  The design of real-time logistics information system for trucking industry , 2008, Comput. Oper. Res..

[70]  Anjali Awasthi,et al.  A multiple container loading problem based algorithm for efficient allocation of goods to vehicles , 2007 .

[71]  G.M. Giaglis,et al.  A dynamic real-timefleet management system for incident handling in city logistics , 2005, 2005 IEEE 61st Vehicular Technology Conference.

[72]  Herbert Kopfer,et al.  Transportation planning in freight forwarding companies: Tabu search algorithm for the integrated operational transportation planning problem , 2009, Eur. J. Oper. Res..

[73]  Jörn Schönberger,et al.  Transport system responsiveness improvement , 2009 .

[74]  M. C. Jensen,et al.  Harvard Business School; SSRN; National Bureau of Economic Research (NBER); European Corporate Governance Institute (ECGI); Harvard University - Accounting & Control Unit , 1976 .

[75]  Jürgen Branke *,et al.  Anticipation and flexibility in dynamic scheduling , 2005 .

[76]  Jörn Schönberger,et al.  On Decision Model Adaptation in Online Optimization of a Transport System , 2007 .

[77]  Cristián E. Cortés,et al.  Hybrid adaptive predictive control for the multi-vehicle dynamic pick-up and delivery problem based on genetic algorithms and fuzzy clustering , 2008, Comput. Oper. Res..

[78]  Krithi Ramamritham,et al.  Scheduling algorithms and operating systems support for real-time systems , 1994, Proc. IEEE.

[79]  Kai Gutenschwager Online-Dispositionsprobleme in der Lagerlogistik , 2002 .