Global Foliations of Matter Spacetimes with Gowdy Symmetry

A global existence theorem, with respect to a geometrically deened time, is shown for Gowdy symmetric globally hyperbolic solutions of the Einstein-Vlasov system for arbitrary (in size) initial data. The spacetimes being studied contain both matter and gravitational waves.

[1]  M. Modgil Interplay between the small and the large scale structure of spacetime , 2010, 1011.2326.

[2]  B. Berger,et al.  Global Foliations of Vacuum Spacetimes withT2Isometry , 1997, gr-qc/9702007.

[3]  D. Christodoulou Self-gravitating relativistic fluids: The formation of a free phase boundary in the phase transition from soft to hard , 1996 .

[4]  A. Rendall Existence of Constant Mean Curvature Foliations in Spacetimes with Two-Dimensional Local Symmetry , 1996, gr-qc/9605022.

[5]  A. Rendall An introduction to the Einstein-Vlasov system , 1996, gr-qc/9604001.

[6]  A. Rendall Crushing singularities in spacetimes with spherical, plane and hyperbolic symmetry , 1994, gr-qc/9411011.

[7]  D. Christodoulou Examples of naked singularity formation in the gravitational collapse of a scalar field , 1994 .

[8]  G. Rein Cosmological solutions of the Vlasov-Einstein system with spherical, plane, and hyperbolic symmetry , 1994, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  S. Klainerman,et al.  The Global Nonlinear Stability of the Minkowski Space. , 1994 .

[10]  D. Christodoulou Bounded variation solutions of the spherically symmetric einstein‐scalar field equations , 1993 .

[11]  G. Rein,et al.  A regularity theorem for solutions of the spherically symmetric Vlasov-Einstein system , 1993, gr-qc/9306020.

[12]  A. Rendall Cosmic censorship and the Vlasov equation , 1992 .

[13]  P. Chruściel,et al.  Strong cosmic censorship in polarised Gowdy spacetimes , 1990 .

[14]  V. Moncrief,et al.  The global existence problem and cosmic censorship in general relativity , 1981 .

[15]  Larry Smarr,et al.  Time functions in numerical relativity: Marginally bound dust collapse , 1979 .

[16]  R. Gowdy Vacuum spacetimes with two-parameter spacelike isometry groups and compact invariant hypersurfaces: Topologies and boundary conditions☆ , 1974 .

[17]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[18]  G. Rein,et al.  Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data , 1992 .

[19]  Jürgen Ehlers,et al.  Survey of General Relativity Theory , 1973 .

[20]  Y. Choquet-Bruhat Problème de Cauchy pour le système intégro-différentiel d'Einstein-Liouville , 1971 .

[21]  R. Geroch,et al.  Global aspects of the Cauchy problem in general relativity , 1969 .