Shape-dependence of the barrier for skyrmions on a two-lane racetrack
暂无分享,去创建一个
[1] U. Rößler,et al. Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies? , 2011, 1102.2726.
[2] S. Heinze,et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .
[3] P. Böni,et al. Spin Transfer Torques in MnSi at Ultralow Current Densities , 2010, Science.
[4] C. Pfleiderer,et al. Rotating skyrmion lattices by spin torques and field or temperature gradients , 2012, 1204.5051.
[5] S. Heinze,et al. Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance. , 2015, Nature nanotechnology.
[6] A. Fert,et al. Skyrmions on the track. , 2013, Nature nanotechnology.
[7] R. Wiesendanger,et al. Writing and Deleting Single Magnetic Skyrmions , 2013, Science.
[8] C. Pfleiderer,et al. Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.
[9] Y. Tokura,et al. Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.
[10] Benjamin Krueger,et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.
[11] M. Garst,et al. Magnon-skyrmion scattering in chiral magnets , 2014, 1405.1568.
[12] A. Hubert,et al. Thermodynamically stable magnetic vortex states in magnetic crystals , 1994 .
[13] R. Wiesendanger,et al. Pinning and movement of individual nanoscale magnetic skyrmions via defects , 2016, 1601.05204.
[14] P. Böni,et al. Skyrmion Lattice in a Chiral Magnet , 2009, Science.
[15] C. Lacroix,et al. Dzyaloshinsky–Moriya interactions induced by symmetry breaking at a surface , 1998 .
[16] M. Mochizuki,et al. Universal current-velocity relation of skyrmion motion in chiral magnets , 2013, Nature Communications.
[17] A. Fert,et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. , 2016, Nature nanotechnology.