Bounds for the Laplacian spectral radius of graphs

This paper is a survey on the upper and lower bounds for the largest eigenvalue of the Laplacian matrix, known as the Laplacian spectral radius, of a graph. The bounds are given as functions of graph parameters like the number of vertices, the number of edges, degree sequence, average 2-degrees, diameter, covering number, domination number, independence number and other parameters.

[1]  Han Hyuk Cho,et al.  Remarks on Spectral Radius and Laplacian Eigenvalues of a Graph , 2005 .

[2]  Mei Lu,et al.  Lower bounds of the Laplacian spectrum of graphs based on diameter , 2007 .

[3]  Oscar Rojo,et al.  Bounds for sums of eigenvalues and applications , 2000 .

[4]  Ji-Ming Guo,et al.  A new upper bound for the Laplacian spectral radius of graphs , 2005 .

[5]  Ting-Zhu Huang,et al.  A note on sum of powers of the Laplacian eigenvalues of bipartite graphs , 2009 .

[6]  Mei Lu,et al.  Bounds for the Laplacian spectral radius of graphs , 2010 .

[7]  Ivan Gutman,et al.  Chemical applications of the Laplacian spectrum. VI On the largest Laplacian eigenvalue of alkanes , 2002 .

[8]  Sebastian M. Cioaba,et al.  Sums of powers of the degrees of a graph , 2006, Discret. Math..

[10]  Ivan Gutman,et al.  Chemical applications of the Laplacian spectrum of molecular graphs: Studies of the Wiener number , 1994 .

[11]  Characterization on graphs which achieve a Das’ upper bound for Laplacian spectral radius , 2005 .

[12]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[13]  Kinkar Ch. Das,et al.  Sharp lower bounds on the Laplacian eigenvalues of trees , 2004 .

[14]  Xiaodong Zhang On the two conjectures of Graffiti , 2004 .

[15]  Zhang Xiaodong,et al.  On thek-th largest eigenvalue of the Laplacian matrix of a graph , 2001 .

[16]  V. Klee,et al.  Combinatorial and graph-theoretical problems in linear algebra , 1993 .

[17]  Yong-Liang Pan,et al.  de Caen's inequality and bounds on the largest Laplacian eigenvalue of a graph , 2001 .

[18]  Kinkar Ch. Das,et al.  An improved upper bound for Laplacian graph eigenvalues , 2003 .

[19]  Xiao-Dong Zhang,et al.  The Laplacian eigenvalues of mixed graphs , 2003 .

[20]  A. Yu A new upper bound for the Laplacian spectral radius of a graph , 2010 .

[21]  V. Nikiforov Bounds on graph eigenvalues I , 2006, math/0602027.

[22]  R. Merris A survey of graph laplacians , 1995 .

[24]  Dragan Stevanović Bounding the largest eigenvalue of trees in terms of the largest vertex degree , 2003 .

[25]  Xiao-Dong Zhang,et al.  Two sharp upper bounds for the Laplacian eigenvalues , 2004 .

[26]  Bin Li,et al.  Improved Upper Bounds for the Laplacian Spectral Radius of a Graph , 2011, Electron. J. Comb..

[27]  Huiqing Liu,et al.  On the Laplacian spectral radius of a graph , 2004 .

[28]  Oscar Rojo,et al.  An always nontrivial upper bound for Laplacian graph eigenvalues , 2000 .

[29]  Zhang Xiaodong,et al.  A new upper bound for eigenvalues of the laplacian matrix of a graph , 1997 .

[30]  Xiao-Dong Zhang,et al.  Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees , 2005, Discret. Math..

[31]  F. Tian,et al.  Bounds of Laplacian spectrum of graphs based on the domination number , 2005 .

[32]  Dominique de Caen,et al.  An upper bound on the sum of squares of degrees in a graph , 1998, Discret. Math..

[33]  SHARP UPPER BOUNDS ON THE SPECTRAL RADIUS OF THE LAPLACIAN MATRIX OF GRAPHS , 2005 .

[34]  B. Mohar,et al.  Eigenvalues and the max-cut problem , 1990 .

[35]  Russell Merris,et al.  The Laplacian Spectrum of a Graph II , 1994, SIAM J. Discret. Math..

[36]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[37]  B. Mohar,et al.  Eigenvalues in Combinatorial Optimization , 1993 .

[38]  R. Merris A note on Laplacian graph eigenvalues , 1998 .

[39]  Huiqing Liu,et al.  An improved upper bound for the Laplacian spectral radius of graphs , 2009, Discret. Math..

[40]  Rong Luo,et al.  The spectral radius of triangle-free graphs , 2002, Australas. J Comb..

[41]  Kinkar Ch. Das The largest two Laplacian eigenvalues of a graph , 2004 .

[42]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[43]  Huiqing Liu,et al.  Laplacian spectral bounds for clique and independence numbers of graphs , 2007, J. Comb. Theory, Ser. B.

[44]  M. Lewin On nonnegative matrices , 1971 .

[45]  Xiaodong Zhang,et al.  The Laplacian spectrum of a mixed graph , 2002 .

[46]  Yong-Liang Pan,et al.  Sharp upper bounds for the Laplacian graph eigenvalues , 2002 .

[47]  Patrick Solé,et al.  Expanding and Forwarding , 1995, Discret. Appl. Math..

[48]  Bo Zhou,et al.  On Laplacian Eigenvalues of a Graph , 2004 .

[49]  Michael William Newman,et al.  The Laplacian spectrum of graphs , 2001 .

[50]  Ji-Ming Guo On the Laplacian spectral radius of a tree , 2003 .

[51]  W. Shiu,et al.  The Laplacian spectral radius of graphs , 2010 .

[52]  Tian-fei Wang Several sharp upper bounds for the largest laplacian eigenvalue of a graph , 2007 .

[53]  V. Sunder,et al.  The Laplacian spectrum of a graph , 1990 .

[54]  F. Tian,et al.  On the spectral radius of graphs , 2004 .

[55]  Mirko Lepovic,et al.  The high-energy band in the photoelectron spectrum of alkanes and its dependence on molecular structure , 1999 .

[56]  Guojie Li,et al.  From the Editor-in-Chief , 1995, Journal of Computer Science and Technology.

[57]  Improved bounds for the largest eigenvalue of trees , 2005 .

[58]  Kinkar Ch. Das,et al.  A characterization on graphs which achieve the upper bound for the largest Laplacian eigenvalue of graphs , 2004 .

[59]  Jinlong Shu,et al.  A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph , 2002 .

[60]  Dongmei Zhu On upper bounds for Laplacian graph eigenvalues , 2010 .

[61]  R. Merris Laplacian matrices of graphs: a survey , 1994 .