Limited‐memory adaptive snapshot selection for proper orthogonal decomposition
暂无分享,去创建一个
Geoffrey Oxberry | William Arrighi | Tanya Kostova-Vassilevska | Kyle Chand | G. Oxberry | K. Chand | W. Arrighi | T. Kostova-Vassilevska
[1] David Amsallem,et al. An adaptive and efficient greedy procedure for the optimal training of parametric reduced‐order models , 2015 .
[2] David J. Lucia,et al. Reduced Order Modeling for a One-Dimensional Nozzle Flow with Moving Shocks , 2001 .
[3] William Gropp,et al. Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.
[4] L. Sirovich. Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .
[5] Stefan Volkwein,et al. Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..
[6] Paul Van Dooren,et al. Recursive Calculation of Dominant Singular Subspaces , 2003, SIAM J. Matrix Anal. Appl..
[7] A. Patera,et al. A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations , 2005 .
[8] Zhu Wang,et al. Are the Snapshot Difference Quotients Needed in the Proper Orthogonal Decomposition? , 2013, SIAM J. Sci. Comput..
[9] P. Holmes,et al. The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .
[10] D. Keyes,et al. Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .
[11] Oliver Lass,et al. Adaptive POD basis computation for parametrized nonlinear systems using optimal snapshot location , 2014, Comput. Optim. Appl..
[12] R. H. W. HOPPE,et al. Snapshot location by error equilibration in proper orthogonal decomposition for linear and semilinear parabolic partial differential equations , 2014, J. Num. Math..
[13] Muruhan Rathinam,et al. A New Look at Proper Orthogonal Decomposition , 2003, SIAM J. Numer. Anal..
[14] Danny C. Sorensen,et al. Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..
[15] Charbel Farhat,et al. The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..
[16] M. Brand,et al. Fast low-rank modifications of the thin singular value decomposition , 2006 .
[17] Stefan Volkwein,et al. Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.
[18] Matthew Brand,et al. Incremental Singular Value Decomposition of Uncertain Data with Missing Values , 2002, ECCV.
[19] Adrian Sandu,et al. Comparison of POD reduced order strategies for the nonlinear 2D shallow water equations , 2014, International Journal for Numerical Methods in Fluids.
[20] Danny C. Sorensen,et al. A Posteriori Error Estimation for DEIM Reduced Nonlinear Dynamical Systems , 2014, SIAM J. Sci. Comput..
[21] Kevin Carlberg,et al. The ROMES method for statistical modeling of reduced-order-model error , 2014, SIAM/ASA J. Uncertain. Quantification.
[22] Danny C. Sorensen,et al. A State Space Error Estimate for POD-DEIM Nonlinear Model Reduction , 2012, SIAM J. Numer. Anal..
[23] Paul Van Dooren,et al. Model Reduction of Time-Varying Systems , 2005 .
[24] C. Farhat,et al. Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations , 2011 .
[25] B. Haasdonk,et al. REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .
[26] Bernard Haasdonk,et al. A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space , 2011 .
[27] Linda R. Petzold,et al. Approved for public release; further dissemination unlimited Error Estimation for Reduced Order Models of Dynamical Systems ∗ , 2003 .
[28] John R. Singler,et al. New POD Error Expressions, Error Bounds, and Asymptotic Results for Reduced Order Models of Parabolic PDEs , 2014, SIAM J. Numer. Anal..
[29] A. Hindmarsh,et al. CVODE, a stiff/nonstiff ODE solver in C , 1996 .
[30] Carol S. Woodward,et al. Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..
[31] Charbel Farhat,et al. Construction of Parametrically-Robust CFD-Based Reduced-Order Models for PDE-Constrained Optimization , 2013 .
[32] Charbel Farhat,et al. Nonlinear Model Reduction for CFD Problems Using Local Reduced Order Bases , 2012 .
[33] D. Ryckelynck,et al. A priori hyperreduction method: an adaptive approach , 2005 .
[34] Kevin Carlberg,et al. Adaptive h‐refinement for reduced‐order models , 2014, ArXiv.
[35] K. Kunisch,et al. Optimal snapshot location for computing POD basis functions , 2010 .
[36] Sivasankaran Rajamanickam,et al. EFFICIENT ALGORITHMS FOR SPARSE SINGULAR VALUE DECOMPOSITION , 2009 .
[37] Liqian Peng,et al. An Online Manifold Learning Approach for Model Reduction of Dynamical Systems , 2012, SIAM J. Numer. Anal..
[38] Paul Van Dooren,et al. Low-rank incremental methods for computing dominant singular subspaces☆ , 2012 .
[39] C. Farhat,et al. A low‐cost, goal‐oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems , 2011 .
[40] David J. Lucia,et al. Reduced Order Modeling For High Speed Flows with Moving Shocks , 2001 .
[41] P. Sagaut,et al. Towards an adaptive POD/SVD surrogate model for aeronautic design , 2011 .