Optimizing surface finish in a turning operation using the Taguchi parameter design method

This paper presents an application of the Taguchi parameter design method to optimizing the surface finish in a turning operation. The Taguchi parameter design method is an efficient experimental method in which a response variable can be optimized, given various control and noise factors, and using fewer experimental runs than a factorial design. The control parameters for this operation included: spindle speed, feed rate, depth of cut, and tool nose radius. Noise factors included varying room temperature, as well as the use of more than one insert of the same specification, which introduced tool dimension variability. A total of 36 experimental runs were conducted using an orthogonal array, and the ideal combination of control factor levels was determined for the optimal surface roughness and signal-to-noise ratio. A confirmation run was used to verify the results, which indicated that this method was both efficient and effective in determining the best turning parameters for the optimal surface roughness.