A Well-Posed and Discretely Stable Perfectly Matched Layer for Elastic Wave Equations in Second Order Formulation

A well-posed and discretely stable perfectly matched layer for elastic wave equations in second order formulation

[1]  L. Thomsen Weak elastic anisotropy , 1986 .

[2]  Tim Colonius,et al.  A high-order super-grid-scale absorbing layer and its application to linear hyperbolic systems , 2009, J. Comput. Phys..

[3]  Tosio Kato Perturbation theory for linear operators , 1966 .

[4]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[5]  Kristel C. Meza-Fajardo,et al.  A Nonconvolutional, Split-Field, Perfectly Matched Layer for Wave Propagation in Isotropic and Anisotropic Elastic Media: Stability Analysis , 2008 .

[6]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[7]  D. Appelö,et al.  A stable finite difference method for the elastic wave equation on complex geometries with free surfaces , 2007 .

[8]  Jeroen Tromp,et al.  A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation , 2003 .

[9]  Heinz-Otto Kreiss,et al.  Difference Approximations of the Neumann Problem for the Second Order Wave Equation , 2004, SIAM J. Numer. Anal..

[10]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[11]  S. Gedney,et al.  On the long-time behavior of unsplit perfectly matched layers , 2004, IEEE Transactions on Antennas and Propagation.

[12]  David Gottlieb,et al.  A Mathematical Analysis of the PML Method , 1997 .

[13]  Heinz-Otto Kreiss,et al.  Difference Approximations for the Second Order Wave Equation , 2002, SIAM J. Numer. Anal..

[14]  Julien Diaz,et al.  Stabilized Perfectly Matched Layer for Advective Acoustics , 2003 .

[15]  E. A. Skelton,et al.  Guided elastic waves and perfectly matched layers , 2007 .

[16]  N. Anders Petersson,et al.  Perfectly matched layers for Maxwell's equations in second order formulation , 2005 .

[17]  Stephen D. Gedney,et al.  Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media , 2000 .

[18]  Stefan Nilsson,et al.  Stable Difference Approximations for the Elastic Wave Equation in Second Order Formulation , 2007, SIAM J. Numer. Anal..

[19]  Gunilla Kreiss,et al.  A new absorbing layer for elastic waves , 2006, J. Comput. Phys..

[20]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[21]  Raj Mittra,et al.  Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers , 1996 .

[22]  David Rubin,et al.  Introduction to Continuum Mechanics , 2009 .

[23]  Patrick Joly,et al.  Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .

[24]  Chrysoula Tsogka,et al.  Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic hete , 1998 .

[25]  Jan S. Hesthaven,et al.  Long Time Behavior of the Perfectly Matched Layer Equations in Computational Electromagnetics , 2002, J. Sci. Comput..