Low-valent iron(i) amido olefin complexes as promotors for dehydrogenation reactions.

Fe(I) compounds including hydrogenases show remarkable properties and reactivities. Several iron(I) complexes have been established in stoichiometric reactions as model compounds for N2 or CO2 activation. The development of well-defined iron(I) complexes for catalytic transformations remains a challenge. The few examples include cross-coupling reactions, hydrogenations of terminal olefins, and azide functionalizations. Here the syntheses and properties of bimetallic complexes [MFe(I) (trop2 dae)(solv)] (M=Na, solv=3 thf; M=Li, solv=2 Et2 O; trop=5H-dibenzo[a,d]cyclo-hepten-5-yl, dae=(N-CH2 -CH2 -N) with a d(7) Fe low-spin valence-electron configuration are reported. Both compounds promote the dehydrogenation of N,N-dimethylaminoborane, and the former is a precatalyst for the dehydrogenative alcoholysis of silanes. No indications for heterogeneous catalyses were found. High activities and complete conversions were observed particularly with [NaFe(I) (trop2 dae)(thf)3 ].

[1]  Patrick L. Holland,et al.  Isolation and characterization of stable iron(I) sulfide complexes. , 2012, Angewandte Chemie.

[2]  Connie C. Lu,et al.  Fe(I)-mediated reductive cleavage and coupling of CO2 : An FeII(μ-O,μ-CO)FeII core , 2007 .

[3]  F. Neese,et al.  Electronic structure of bis(imino)pyridine iron dichloride, monochloride, and neutral ligand complexes: a combined structural, spectroscopic, and computational study. , 2006, Journal of the American Chemical Society.

[4]  Ying Yu,et al.  Mössbauer, electron paramagnetic resonance, and crystallographic characterization of a high-spin Fe(I) diketiminate complex with orbital degeneracy. , 2005, Inorganic chemistry.

[5]  R. Rodríguez‐Lugo,et al.  A homogeneous transition metal complex for clean hydrogen production from methanol-water mixtures. , 2013, Nature chemistry.

[6]  P. Müller,et al.  Catalytic N-N coupling of aryl azides to yield azoarenes via trigonal bipyramid iron-nitrene intermediates. , 2010, Journal of the American Chemical Society.

[7]  Patrick L. Holland,et al.  Binding affinity of alkynes and alkenes to low-coordinate iron. , 2006, Inorganic chemistry.

[8]  Steven D. Brown,et al.  A low-spin d5 iron imide: nitrene capture by low-coordinate iron(I) provides the 4-coordinate Fe(III) complex [PhB(CH2PPh2)3]Fe=N-p-tolyl. , 2003, Journal of the American Chemical Society.

[9]  Yuning Li,et al.  Synthesis and Properties of Polymers Containing Silphenylene Moiety via Catalytic Cross-Dehydrocoupling Polymerization of 1,4-Bis(dimethylsilyl)benzene , 1999 .

[10]  Michael T. Mock,et al.  Monovalent iron in a sulfur-rich environment. , 2008, Inorganic chemistry.

[11]  M. Wörle,et al.  A Monomeric d9 -Rhodium(0) Complex. , 1998, Angewandte Chemie.

[12]  T. Gallagher,et al.  Iron-Catalyzed Borylation of Alkyl, Allyl, and Aryl Halides: Isolation of an Iron(I) Boryl Complex , 2014 .

[13]  Yunho Lee,et al.  Heterolytic H2 Cleavage and Catalytic Hydrogenation by an Iron Metallaboratrane. , 2013, Organometallics.

[14]  Frank Neese,et al.  Magnetic blocking in a linear iron(I) complex. , 2013, Nature chemistry.

[15]  Patrick L. Holland,et al.  Multimetallic Cooperativity in Activation of Dinitrogen at Iron-Potassium Sites. , 2014, Chemical science.

[16]  Characterization of the Fe-H bond in a three-coordinate terminal hydride complex of iron(I). , 2012, Angewandte Chemie.

[17]  R. Morris,et al.  Evidence for Iron Nanoparticles Catalyzing the Rapid Dehydrogenation of Ammonia-Borane , 2013 .

[18]  Patrick L. Holland,et al.  Studies of low-coordinate iron dinitrogen complexes. , 2006, Journal of the American Chemical Society.

[19]  H. Berke,et al.  Amino olefin nickel(I) and nickel(0) complexes as dehydrogenation catalysts for amine boranes , 2011 .

[20]  Guy Bertrand,et al.  Two-coordinate Fe⁰ and Co⁰ complexes supported by cyclic (alkyl)(amino)carbenes. , 2014, Angewandte Chemie.

[21]  J. Okuda,et al.  Molecular zinc dihydride stabilized by N-heterocyclic carbenes. , 2013, Angewandte Chemie.

[22]  A. Kennedy,et al.  Structurally Stimulated Deprotonation/Alumination of the TMP Anion** , 2010, Angewandte Chemie.

[23]  M. Brookhart,et al.  Catalytic silane alcoholysis based on the C5H5(CO)(PPh3)Fe+ moiety. NMR spectroscopic identification of key intermediates , 1998 .

[24]  H. Berke Conceptual approach to the reactivity of dihydrogen. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  G. Parkin,et al.  Zinc catalysts for on-demand hydrogen generation and carbon dioxide functionalization. , 2012, Journal of the American Chemical Society.

[26]  Thomas P. Spaniol,et al.  Molekulares Zinkdihydrid: Stabilisierung durch N-heterocyclische Carbene† , 2013 .

[27]  A. Ellern,et al.  Coordinatively Saturated Tris(oxazolinyl)borato Zinc Hydride-Catalyzed Cross Dehydrocoupling of Silanes and Alcohols , 2011 .

[28]  A. Fürstner,et al.  Preparation, structure, and reactivity of nonstabilized organoiron compounds. Implications for iron-catalyzed cross coupling reactions. , 2008, Journal of the American Chemical Society.

[29]  Y. Apeloig,et al.  Nonsolvated, aggregated 1,1-dilithiosilane and the derived silyl radicals. , 2005, Angewandte Chemie.

[30]  B. Hoffman,et al.  A nonclassical dihydrogen adduct of S = ½ Fe(I). , 2011, Journal of the American Chemical Society.

[31]  Sylviane Sabo-Etienne,et al.  Koordination und Dehydrierung von Amin‐Boran‐Addukten an Metallzentren , 2010 .

[32]  K. Wieghardt,et al.  Molecular and electronic structure of the square planar bis(o-amidobenzenethiolato)iron(III) anion and its bis(o-quinoxalinedithiolato)iron(III) analogue. , 2008, Inorganic chemistry.

[33]  D. Stephan,et al.  P–H and P–P bond activation by Ni(I) and Fe(I) β-diketiminato-complexes , 2006 .

[34]  J. Peters,et al.  Terminal iron dinitrogen and iron imide complexes supported by a tris(phosphino)borane ligand. , 2011, Angewandte Chemie.

[35]  Connie C. Lu,et al.  CO2 reduction by Fe(I): solvent control of C–O cleavage versus C–C coupling , 2013 .

[36]  J. Fettinger,et al.  Synthesis, structure, and magnetic and electrochemical properties of quasi-linear and linear iron(I), cobalt(I), and nickel(I) amido complexes. , 2014, Inorganic chemistry.

[37]  J. Peters,et al.  Catalytic reduction of N2 to NH3 by an Fe-N2 complex featuring a C-atom anchor. , 2014, Journal of the American Chemical Society.

[38]  C. Anthon,et al.  An iron nitride complex. , 2008, Angewandte Chemie.

[39]  Yuning Li,et al.  Asymmetric Synthesis of Optically Active Poly(silyl ether)s Having Reactive Si-H Groups by Stereoselective Cross-Dehydrocoupling Polymerization of Bis(silane)s with Diols , 2000 .

[40]  B. Scott,et al.  Iron complex-catalyzed ammonia-borane dehydrogenation. A potential route toward B-N-containing polymer motifs using earth-abundant metal catalysts. , 2012, Journal of the American Chemical Society.

[41]  Anne Staubitz,et al.  Ammonia-borane and related compounds as dihydrogen sources. , 2010, Chemical reviews.

[42]  J. Peters,et al.  Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms. , 2003, Journal of the American Chemical Society.

[43]  M. Wörle,et al.  Ein monomerer d9-Rhodium(0)-Komplex , 1998 .

[44]  I. Manners,et al.  Photoactivated, iron-catalyzed dehydrocoupling of amine-borane adducts: formation of boron-nitrogen oligomers and polymers. , 2011, Chemistry.

[45]  J. Okuda,et al.  Bis(allyl)gallium cation, tris(allyl)gallium, and tetrakis(allyl)gallate: synthesis, characterization, and reactivity. , 2012, Inorganic chemistry.

[46]  J. Peters,et al.  Low-spin pseudotetrahedral iron(I) sites in Fe₂(μ-S) complexes. , 2014, Angewandte Chemie.

[47]  S. Sakaki,et al.  Electronic structure of four-coordinate iron(I) complex supported by a bis(phosphaethenyl)pyridine ligand. , 2010, Journal of the American Chemical Society.

[48]  J. M. Smith,et al.  Stepwise reduction of dinitrogen bond order by a low-coordinate iron complex. , 2001, Journal of the American Chemical Society.

[49]  Yuning Li,et al.  Approaches to polymers containing a silicon-oxygen bond in the main chain , 2000 .

[50]  Jonas C. Peters,et al.  On the feasibility of N2 fixation via a single-site FeI/FeIV cycle: Spectroscopic studies of FeI(N2)FeI, FeIVN, and related species , 2006, Proceedings of the National Academy of Sciences.

[51]  P. Budzelaar,et al.  Multiple pathways for dinitrogen activation during the reduction of an Fe Bis(iminepyridine) complex. , 2008, Inorganic chemistry.

[52]  K. Jonas,et al.  Pentamethylcyclopentadienylbis(ethen)eisen - ein 17e-Halbsandwichkomplex mit leicht verdrängbaren Ethenliganden / Pentamethylcyclopentadienylbis(ethene)iron - a 17e Halfsandwich Complex with Easily Displaceable Ethene Ligands , 1995 .

[53]  Y. Miyake,et al.  Synthesis of Group IV (Zr, Hf)−Group VIII (Fe, Ru) Heterobimetallic Complexes Bearing Metallocenyl Diphosphine Moieties and Their Application to Catalytic Dehydrogenation of Amine−Boranes , 2011 .

[54]  J. Harvey,et al.  Simplifying iron-phosphine catalysts for cross-coupling reactions. , 2013, Angewandte Chemie.

[55]  Patrick L. Holland,et al.  Mechanism of Catalytic Nitrene Transfer Using Iron(I)–Isocyanide Complexes , 2013 .

[56]  I. Manners,et al.  Amine- and phosphine-borane adducts: new interest in old molecules. , 2010, Chemical reviews.

[57]  W. M. Davis,et al.  LOW-COORDINATE IRON COMPLEXES STABILIZED BY N-(TERT-HYDROCARBYL)ANILIDE LIGATION : ADDUCT FORMATION, CHEMICAL OXIDATION, AND NITRIC OXIDE COMPLEXATION , 1996 .

[58]  S. Rubinsztajn,et al.  Preparation of Polyaryloxysilanes and Polyaryloxysiloxanes by B(C6F5)3 Catalyzed Polyetherification of Dihydrosilanes and Bis-Phenols , 2008 .

[59]  J. Long,et al.  Two-coordinate iron(I) complex [Fe{N(SiMe3)2}2](-) : synthesis, properties, and redox activity. , 2015, Angewandte Chemie.

[60]  Y. Nakajima,et al.  Reduction of an Fe(I) mesityl complex induced by π-acid ligands. , 2014, Dalton transactions.

[61]  I. Manners,et al.  Iron-catalyzed dehydrocoupling/dehydrogenation of amine-boranes. , 2014, Journal of the American Chemical Society.

[62]  Johannes E. M. N. Klein,et al.  Cooperative catalysis: electron-rich Fe-H complexes and DMAP, a successful "joint venture" for ultrafast hydrogen production. , 2014, Chemistry, an Asian journal.

[63]  J. Harvey,et al.  Iron Phosphine Catalyzed Cross-Coupling of Tetraorganoborates and Related Group 13 Nucleophiles with Alkyl Halides , 2014 .

[64]  Patrick L. Holland,et al.  Generation of high-spin iron(I) in a protein environment using cryoreduction. , 2013, Inorganic chemistry.

[65]  P. Chirik,et al.  Square planar vs tetrahedral geometry in four coordinate iron(II) complexes. , 2005, Inorganic chemistry.

[66]  G. Parkin,et al.  The Synthesis, Structure, and Reactivity of Phenyl Tris(3-tert-butylpyrazolyl)borato Iron Methyl, [PhTpBut]FeMe: Isolation of a Four-Coordinate Monovalent Iron Carbonyl Complex, [PhTpBut]FeCO , 1998 .

[67]  Yunho Lee,et al.  Silylation of iron-bound carbon monoxide affords a terminal Fe carbyne. , 2011, Journal of the American Chemical Society.

[68]  C. Pickett,et al.  Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. , 2009, Chemical reviews.

[69]  D. Armstrong,et al.  Co-complexation syntheses, structural characterization, and DFT studies of a novel series of polymeric alkali-metal tetraorganogallates , 2013 .

[70]  J. Harvey,et al.  Iron(I) in Negishi cross-coupling reactions. , 2012, Journal of the American Chemical Society.

[71]  Patrick L. Holland,et al.  The reactivity patterns of low-coordinate iron-hydride complexes. , 2008, Journal of the American Chemical Society.

[72]  S. Sabo-Etienne,et al.  Coordination and dehydrogenation of amine-boranes at metal centers. , 2010, Angewandte Chemie.