Novel Quantification of Shallow Sediment Compaction by GPS Interferometric Reflectometry and Implications for Flood Susceptibility

Estimates of flood susceptibility and land loss in the world's coastal regions depend on our knowledge of sea level rise (SLR) from increases in ocean mass and volume, as well as knowledge of vertical land motion. Conventional approaches to the latter include tide‐gauge and Global Positioning System (GPS) measurements relative to well‐anchored monuments few meters below the surface. However, in regions of rapid Holocene sedimentation, compaction of this material can add a significant component to the surface lowering. Unfortunately, this process has been difficult to quantify, especially for the shallowest material above the monument. Here we use a new technique, GPS interferometric reflectometry, to estimate the rate of this process in the Mississippi Delta and the eastern margin of the North Sea. We show that the rate of shallow compaction is comparable to or larger than the rate of global SLR, adding 35% and 65%, respectively, to the rate of relative SLR by 2100.

[1]  H. Theil A Rank-Invariant Method of Linear and Polynomial Regression Analysis , 1992 .

[2]  D. W. Allan,et al.  Statistics of atomic frequency standards , 1966 .

[3]  P. Sen Estimates of the Regression Coefficient Based on Kendall's Tau , 1968 .

[4]  D. Stanley,et al.  Worldwide Initiation of Holocene Marine Deltas by Deceleration of Sea-Level Rise , 1994, Science.

[5]  J. Milliman,et al.  Sea-Level Rise and Coastal Subsidence , 1996 .

[6]  Mahmood Alam Subsidence of the Ganges—Brahmaputra Delta of Bangladesh and Associated Drainage, Sedimentation and Salinity Problems , 1996 .

[7]  J. Zumberge,et al.  Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .

[8]  Khaled H. Hamed,et al.  A modified Mann-Kendall trend test for autocorrelated data , 1998 .

[9]  H. Kooi,et al.  Land subsidence and hydrodynamic compaction of sedimentary basins , 1998 .

[10]  T. Dixon,et al.  Noise in GPS coordinate time series , 1999 .

[11]  D. Beets,et al.  The Holocene evolution of the barrier and the back-barrier basins of Belgium and the Netherlands as a function of late Weichselian morphology, relative sea-level rise and sediment supply , 2000, Netherlands Journal of Geosciences - Geologie en Mijnbouw.

[12]  J. Day,et al.  High-precision measurements of wetland sediment elevation. I. Recent improvements to the sedimentation--erosion table , 2002 .

[13]  M. Merrifield,et al.  Technical Issues and Recommendations Related to the Installation of Continuous GPS Stations at Tide Gauges , 2002 .

[14]  S. Williams The effect of coloured noise on the uncertainties of rates estimated from geodetic time series , 2003 .

[15]  A. Long,et al.  Driving mechanisms of coastal change: Peat compaction and the destruction of late Holocene coastal wetlands , 2006 .

[16]  F. Rocca,et al.  Space geodesy: Subsidence and flooding in New Orleans , 2006, Nature.

[17]  R. Edwards Mid-to late-Holocene relative sea-level change in southwest Britain and the influence of sediment compaction , 2006 .

[18]  T. Meckel,et al.  Current subsidence rates due to compaction of Holocene sediments in southern Louisiana , 2006 .

[19]  H. Schuh,et al.  Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium‐Range Weather Forecasts operational analysis data , 2006 .

[20]  M. Bouin,et al.  Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide , 2007 .

[21]  P. Teunissen,et al.  Assessment of noise in GPS coordinate time series : Methodology and results , 2007 .

[22]  T. Törnqvist,et al.  Mississippi Delta subsidence primarily caused by compaction of Holocene strata , 2008 .

[23]  P. Axelrad,et al.  Modeling GPS phase multipath with SNR: Case study from the Salar de Uyuni, Boliva , 2008 .

[24]  Tilo Schöne,et al.  IGS Tide Gauge Benchmark Monitoring Pilot Project (TIGA): scientific benefits , 2009 .

[25]  M. Bouin,et al.  Rates of sea‐level change over the past century in a geocentric reference frame , 2009 .

[26]  I. Overeem,et al.  Sinking deltas due to human activities , 2009 .

[27]  S. Mazzotti,et al.  Impact of anthropogenic subsidence on relative sea-level rise in the Fraser River delta , 2009 .

[28]  Valery U. Zavorotny,et al.  GPS Multipath and Its Relation to Near-Surface Soil Moisture Content , 2010, IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens..

[29]  E. Small,et al.  Sensing vegetation growth with reflected GPS signals , 2010 .

[30]  M. Bouin,et al.  Land motion estimates from GPS at tide gauges: a geophysical evaluation , 2010 .

[31]  Jan P. Weiss,et al.  Single receiver phase ambiguity resolution with GPS data , 2010 .

[32]  G. Steyer Coastwide Reference Monitoring System (CRMS) , 2010 .

[33]  D. Karssenberg,et al.  Contribution of peat compaction to relative sea‐level rise within Holocene deltas , 2011 .

[34]  J. Gunnink,et al.  3D modelling of the shallow subsurface of Zeeland, the Netherlands , 2011, Netherlands Journal of Geosciences - Geologie en Mijnbouw.

[35]  U. Hugentobler,et al.  Estimation of velocity uncertainties from GPS time series: Examples from the analysis of the South African TrigNet network , 2011 .

[36]  M. Bouin,et al.  Correlated errors in GPS position time series: Implications for velocity estimates , 2011 .

[37]  L. Tosi,et al.  Quantitative evidence that compaction of Holocene sediments drives the present land subsidence of the Po Delta, Italy , 2011 .

[38]  R. Dokka The role of deep processes in late 20th century subsidence of New Orleans and coastal areas of southern Louisiana and Mississippi , 2011 .

[39]  Thomas E. Fricker,et al.  A verification framework for interannual-to-decadal predictions experiments , 2012, Climate Dynamics.

[40]  X. Collilieux,et al.  Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field , 2012 .

[41]  D. Petley,et al.  Modelling the effects of sediment compaction on salt marsh reconstructions of recent sea-level rise , 2012 .

[42]  W. Peltier,et al.  Influence of tidal‐range change and sediment compaction on Holocene relative sea‐level change in New Jersey, USA , 2013, Journal of Quaternary Science.

[43]  Jeffrey T. Freymueller,et al.  The Accidental Tide Gauge: A GPS Reflection Case Study From Kachemak Bay, Alaska , 2013, IEEE Geoscience and Remote Sensing Letters.

[44]  Felipe G. Nievinski,et al.  Forward modeling of GPS multipath for near-surface reflectometry and positioning applications , 2014, GPS Solutions.

[45]  Matt A. King,et al.  Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment , 2013 .

[46]  D. Cahoon,et al.  A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise , 2013 .

[47]  J. Ray,et al.  Impacts of GNSS position offsets on global frame stability , 2014 .

[48]  Stewart J. Cohen,et al.  Climate Change 2014: Impacts,Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2014 .

[49]  C. Tebaldi,et al.  Probabilistic 21st and 22nd century sea‐level projections at a global network of tide‐gauge sites , 2014 .

[50]  D. Stammer,et al.  Projecting twenty-first century regional sea-level changes , 2014, Climatic Change.

[51]  S. Ingebritsen,et al.  Coastal subsidence and relative sea level rise , 2014 .

[52]  W. Peltier,et al.  Space geodesy constrains ice age terminal deglaciation: The global ICE‐6G_C (VM5a) model , 2015 .

[53]  S. Jevrejeva,et al.  Sea level rise projections for northern Europe under RCP 8 . 5 , 2015 .

[54]  S. Higgins Review: Advances in delta-subsidence research using satellite methods , 2016, Hydrogeology Journal.

[55]  T. Dixon,et al.  A three-dimensional surface velocity field for the Mississippi Delta: Implications for coastal restoration and flood potential , 2015 .

[56]  S. Jevrejeva,et al.  Sea level rise projections for northern Europe under RCP8.5 , 2015 .

[57]  M. Marcos,et al.  Vertical land motion as a key to understanding sea level change and variability , 2016 .

[58]  G. Blewitt,et al.  Assessing the impact of vertical land motion on twentieth century global mean sea level estimates , 2016 .

[59]  S. Jevrejeva,et al.  A probabilistic approach to 21st century regional sea-level projections using RCP and High-end scenarios , 2016 .

[60]  M. Brain Past, Present and Future Perspectives of Sediment Compaction as a Driver of Relative Sea Level and Coastal Change , 2016, Current Climate Change Reports.

[61]  Cathleen E. Jones,et al.  Anthropogenic and geologic influences on subsidence in the vicinity of New Orleans, Louisiana , 2016 .

[62]  G. Blewitt,et al.  MIDAS robust trend estimator for accurate GPS station velocities without step detection , 2016, Journal of geophysical research. Solid earth.

[63]  J. Ray,et al.  The IGS contribution to ITRF2014 , 2016, Journal of Geodesy.

[64]  S. Tulaczyk,et al.  Snow accumulation variability on a West Antarctic ice stream observed with GPS reflectometry, 2007–2017 , 2017 .

[65]  L. Tarasov,et al.  The Influence of Sediment Isostatic Adjustment on Sea Level Change and Land Motion Along the U.S. Gulf Coast , 2017 .

[66]  T. Törnqvist,et al.  Mechanisms of late Quaternary fault throw‐rate variability along the north central Gulf of Mexico coast: implications for coastal subsidence , 2017 .

[67]  J. Kusche,et al.  Nuisance Flooding and Relative Sea-Level Rise: the Importance of Present-Day Land Motion , 2017, Scientific Reports.

[68]  K. Simon,et al.  A data-driven model for constraint of present-day glacial isostatic adjustment in North America , 2017 .

[69]  Matt A. King,et al.  The increasing rate of global mean sea-level rise during 1993–2014 , 2017 .

[70]  T. Törnqvist,et al.  Vulnerability of Louisiana's coastal wetlands to present-day rates of relative sea-level rise , 2017, Nature Communications.

[71]  C. E. Jones,et al.  Spaceborne Synthetic Aperture Radar Survey of Subsidence in Hampton Roads, Virginia (USA) , 2017, Scientific Reports.

[72]  C. Conrad,et al.  Reassessment of 20th century global mean sea level rise , 2017, Proceedings of the National Academy of Sciences.

[73]  E. Gebremichael Assessing Land Deformation and Sea Encroachment in the Nile Delta, Egypt , 2018 .

[74]  G. Blewitt,et al.  GIA Model Statistics for GRACE Hydrology, Cryosphere, and Ocean Science , 2018 .

[75]  G. Blewitt,et al.  Harnessing the GPS Data Explosion for Interdisciplinary Science , 2018, Eos.

[76]  M. Sultan,et al.  Assessing Land Deformation and Sea Encroachment in the Nile Delta: A Radar Interferometric and Inundation Modeling Approach , 2018 .

[77]  R. Bürgmann,et al.  Global climate change and local land subsidence exacerbate inundation risk to the San Francisco Bay Area , 2018, Science Advances.

[78]  E. Stouthamer,et al.  Differential subsidence in the urbanised coastal-deltaic plain of the Netherlands , 2018, Netherlands Journal of Geosciences.

[79]  K. Simon,et al.  The glacial isostatic adjustment signal at present day in northern Europe and the British Isles estimated from geodetic observations and geophysical models , 2018, Solid Earth.

[80]  Measuring rates of present-day relative sea-level rise in low-elevation coastal zones: a critical evaluation , 2019, Ocean Science.

[81]  R. Anderson,et al.  The Mississippi River records glacial-isostatic deformation of North America , 2019, Science Advances.

[82]  A. Islam,et al.  Water level changes, subsidence, and sea level rise in the Ganges–Brahmaputra–Meghna delta , 2020, Proceedings of the National Academy of Sciences.