Cramer rule for the unique solution of restricted matrix equations over the quaternion skew field

In this paper, we establish the determinantal representations of the generalized inverses A"r"""T"""""""1""","""S"""""""1^(^2^),A"l"""T"""""""2""","""S"""""""2^(^2^) and A"""("""T"""""""1""","""T"""""""2""")""","""("""S"""""""1""","""S"""""""2""")^(^2^) over the quaternion skew field by the theory of the column and row determinants. In addition, we derive some generalized Cramer rules for the unique solution of some restricted quaternion matrix equations. The findings of this paper extend some known results in the literature.

[1]  Guorong Wang,et al.  A Cramer rule for minimum-norm (T) least-squares (S) solution of inconsistent linear equations , 1986 .

[2]  Fuzhen Zhang Quaternions and matrices of quaternions , 1997 .

[3]  Fuzhen Zhang Geršgorin type theorems for quaternionic matrices , 2007 .

[4]  Ivan Kyrchei Determinantal representations of the Moore–Penrose inverse over the quaternion skew field and corresponding Cramer's rules , 2010, 1005.0736.

[5]  Nicolas Le Bihan,et al.  Quaternion principal component analysis of color images , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[6]  Ivan Kyrchei,et al.  Cramer's rule for quaternionic systems of linear equations , 2008 .

[7]  Stephen M. Robinson A Short Proof of Cramer's Rule , 1970 .

[8]  Yong-Lin Chen Finite algorithms for the (2)-generalized inverse , 1995 .

[9]  Adi Ben-Israel,et al.  A Cramer rule for least-norm solutions of consistent linear equations , 1982 .

[10]  Nir Cohen,et al.  The quaternionic determinant , 2000 .

[11]  Andrew Chang Quaternionic analysis , 1979, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  Jin Zhong,et al.  On the (p, q) outer generalized inverse in Banach algebra , 2009, Appl. Math. Comput..

[13]  Helmer Aslaksen,et al.  Quaternionic determinants , 1996 .

[14]  Yong-Lin Chen A cramer rule for solution of the general restricted linear equation , 1993 .

[15]  Ivan Kyrchei Cramer's rule for some quaternion matrix equations , 2010, Appl. Math. Comput..

[16]  Jing Cai,et al.  On determinantal representation for the generalized inverse A&math image; and its applications , 2007, Numer. Linear Algebra Appl..

[17]  INVERSE MATRIX AND PROPERTIES OF DOUBLE DETERMINANT OVER QUATERNION FIELD , 1991 .

[18]  Wasin So,et al.  On left eigenvalues of a quaternionic matrix , 2001 .

[19]  I. Gel'fand,et al.  Determinants of matrices over noncommutative rings , 1991 .

[20]  Igor Frenkel,et al.  Quaternionic analysis, representation theory and physics II , 2007, Advances in Theoretical and Mathematical Physics.

[21]  Elizabeth Marquardt,et al.  Truncated expansion of $\zeta_{p^n}$ in the $p$-adic Mal'cev-Neumann field , 2021, 2111.07127.

[22]  Jeremy J. Gray,et al.  Years ago , 1996 .

[23]  Bing Zheng,et al.  The reverse order law for the generalized inverse A(2)T, S , 2004, Appl. Math. Comput..

[24]  Nicolas Le Bihan,et al.  Quaternion singular value decomposition based on bidiagonalization to a real or complex matrix using quaternion Householder transformations , 2006, Appl. Math. Comput..

[25]  Guo-rong Wang,et al.  The Generalized Inverse A(2)T, S of a Matrix Over an Associative Ring , 2007, Journal of the Australian Mathematical Society.

[26]  I. Gel'fand,et al.  A theory of noncommutative determinants and characteristic functions of graphs , 1992 .

[27]  Musheng Wei,et al.  Rank equalities related to the generalized inverses AT, S(2), BT1, S1(2) of two matrices A and B , 2004, Appl. Math. Comput..

[28]  Chen Longxuan,et al.  Definition of determinant and cramer solutions over the quaternion field , 1991 .

[29]  Yimin Wei,et al.  A characterization and representation of the generalized inverse A(2)T,S and its applications , 1998 .

[30]  S. Leo,et al.  Right eigenvalue equation in quaternionic quantum mechanics , 2000, math-ph/0002051.

[31]  D. Djordjevic,et al.  Outer Generalized Inverses in Rings , 2005 .

[32]  Yaoming Yu,et al.  Determinantal representation of the generalized inverse \bi A_{T,S}^{(2)} over integral domains and its applications , 2009 .

[33]  George C. Verghese A “Cramer rule” for the least-norm, least-squared-error solution of inconsistent linear equations , 1982 .