Super-resolution fluorescence imaging of chromosomal DNA.

Super-resolution microscopy is a powerful tool for understanding cellular function. However one of the most important biomolecules - DNA - remains somewhat inaccessible because it cannot be effectively and appropriately labeled. Here, we demonstrate that robust and detailed super-resolution images of DNA can be produced by combining 5-ethynyl-2'-deoxyuridine (EdU) labeling using the 'click chemistry' approach and direct stochastic optical reconstruction microscopy (dSTORM). This method can resolve fine chromatin structure, and - when used in conjunction with pulse labeling - can reveal the paths taken by individual fibers through the nucleus. This technique should provide a useful tool for the study of nuclear structure and function.

[1]  S. Q. Xie,et al.  Fixation-induced redistribution of hyperphosphorylated RNA polymerase II in the nucleus of human cells. , 2004, Experimental cell research.

[2]  C. Flors,et al.  DNA and chromatin imaging with super‐resolution fluorescence microscopy based on single‐molecule localization , 2011, Biopolymers.

[3]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[4]  Mike Heilemann,et al.  Live-cell super-resolution imaging with trimethoprim conjugates , 2010, Nature Methods.

[5]  Christoph Cremer,et al.  Combining FISH with localisation microscopy: Super-resolution imaging of nuclear genome nanostructures , 2010, Chromosome Research.

[6]  Isuru D. Jayasinghe,et al.  Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes , 2009, Proceedings of the National Academy of Sciences.

[7]  S. Hell,et al.  Fluorescence Nanoscopy of Single DNA Molecules by Using Stimulated Emission Depletion (STED)** , 2011, Angewandte Chemie.

[8]  Keith A. Lidke,et al.  Fast, single-molecule localization that achieves theoretically minimum uncertainty , 2010, Nature Methods.

[9]  S Wolter,et al.  Real‐time computation of subdiffraction‐resolution fluorescence images , 2010, Journal of microscopy.

[10]  X. Zhuang,et al.  Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells , 2010, Cell.

[11]  L. Schermelleh,et al.  Functional nuclear organization of transcription and DNA replication: a topographical marriage between chromatin domains and the interchromatin compartment. , 2010, Cold Spring Harbor symposia on quantitative biology.

[12]  S. Hell Microscopy and its focal switch , 2008, Nature Methods.

[13]  Cameron S. Osborne,et al.  Replication and transcription: Shaping the landscape of the genome , 2005, Nature Reviews Genetics.

[14]  B. Ripley Modelling Spatial Patterns , 1977 .

[15]  C. E. Hildebrand,et al.  Hydroxyurea does not prevent synchronized G1 chinese hamster cells from entering the DNA synthetic period. , 1976, Biochemical and biophysical research communications.

[16]  C. Ravarani,et al.  Super-resolution imaging of DNA labelled with intercalating dyes. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[17]  Mike Heilemann,et al.  Fluorescence microscopy beyond the diffraction limit. , 2010, Journal of biotechnology.

[18]  M. Groudine,et al.  Controlling the double helix , 2003, Nature.

[19]  J. Hancock,et al.  On the use of Ripley's K-function and its derivatives to analyze domain size. , 2009, Biophysical journal.

[20]  R. Schneider,et al.  Dynamics and interplay of nuclear architecture, genome organization, and gene expression. , 2007, Genes & development.

[21]  E. Betzig,et al.  Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics , 2008, Nature Methods.

[22]  Ana Pombo,et al.  Replicon Clusters Are Stable Units of Chromosome Structure: Evidence That Nuclear Organization Contributes to the Efficient Activation and Propagation of S Phase in Human Cells , 1998, The Journal of cell biology.

[23]  Ronald Berezney,et al.  The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells , 2002, Journal of Cell Science.

[24]  M. Heilemann,et al.  Direct stochastic optical reconstruction microscopy with standard fluorescent probes , 2011, Nature Protocols.

[25]  Christoph Cremer,et al.  Localization microscopy reveals expression-dependent parameters of chromatin nanostructure. , 2010, Biophysical journal.

[26]  Astrid Magenau,et al.  Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events , 2011, Nature Immunology.

[27]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[28]  Sebastian van de Linde,et al.  Live-cell dSTORM with SNAP-tag fusion proteins. , 2011, Nature methods.

[29]  Mike Heilemann,et al.  Surfing on a new wave of single-molecule fluorescence methods , 2010, Physical biology.

[30]  Timothy J. Mitchison,et al.  A chemical method for fast and sensitive detection of DNA synthesis in vivo , 2008, Proceedings of the National Academy of Sciences.

[31]  M. Gustafsson,et al.  Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy , 2008, Science.

[32]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[33]  Mike Heilemann,et al.  The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging. , 2010, Journal of biotechnology.

[34]  M. Yarus,et al.  Visualization of membrane RNAs. , 2003, RNA.

[35]  H. Leonhardt,et al.  A guide to super-resolution fluorescence microscopy , 2010, The Journal of cell biology.

[36]  Christoph Cremer,et al.  COMBO-FISH Enables High Precision Localization Microscopy as a Prerequisite for Nanostructure Analysis of Genome Loci , 2010, International journal of molecular sciences.

[37]  R Berezney,et al.  Mapping replicational sites in the eucaryotic cell nucleus , 1989, The Journal of cell biology.

[38]  X. Zhuang,et al.  Fast three-dimensional super-resolution imaging of live cells , 2011, Nature Methods.

[39]  Peter J. Verveer,et al.  Chemically Induced Photoswitching of Fluorescent Probes—A General Concept for Super-Resolution Microscopy , 2011, Molecules.

[40]  M. Heilemann,et al.  Carbocyanine dyes as efficient reversible single-molecule optical switch. , 2005, Journal of the American Chemical Society.

[41]  Tetsuya Hori,et al.  A super-resolution map of the vertebrate kinetochore , 2010, Proceedings of the National Academy of Sciences.